Spaces:
Sleeping
Sleeping
| """ | |
| Simplified agent implementations for Hugging Face Spaces demo. | |
| """ | |
| import asyncio | |
| from typing import Any | |
| class HRMAgent: | |
| """Hierarchical Reasoning Module - breaks down complex queries.""" | |
| def __init__(self, llm_client): | |
| """Initialize with an LLM client. | |
| Args: | |
| llm_client: LLM client (MockLLMClient or HuggingFaceClient) | |
| """ | |
| self.llm_client = llm_client | |
| self.name = "HRM (Hierarchical Reasoning)" | |
| async def process(self, query: str) -> dict[str, Any]: | |
| """Process query using hierarchical decomposition. | |
| Args: | |
| query: Input query to process | |
| Returns: | |
| Dictionary with response, confidence, and reasoning steps | |
| """ | |
| # Step 1: Decompose the query | |
| decomposition_steps = await self._decompose_query(query) | |
| # Step 2: Analyze each component | |
| analysis_results = await self._analyze_components(decomposition_steps) | |
| # Step 3: Synthesize hierarchical response | |
| llm_result = await self.llm_client.generate( | |
| prompt=f"Hierarchical analysis of: {query}", context=f"Components: {', '.join(decomposition_steps)}" | |
| ) | |
| # Compile reasoning steps | |
| reasoning_steps = [ | |
| f"1. Query decomposition: Identified {len(decomposition_steps)} key components", | |
| f"2. Component analysis: {analysis_results}", | |
| "3. Hierarchical synthesis: Combined insights from all levels", | |
| f"4. Confidence assessment: {llm_result['confidence']:.1%} based on component clarity", | |
| ] | |
| return { | |
| "response": llm_result["response"], | |
| "confidence": llm_result["confidence"], | |
| "steps": reasoning_steps, | |
| "components": decomposition_steps, | |
| "tokens_used": llm_result.get("tokens_used", 0), | |
| } | |
| async def _decompose_query(self, query: str) -> list[str]: | |
| """Decompose query into hierarchical components.""" | |
| # Simulate decomposition based on query structure | |
| await asyncio.sleep(0.05) # Simulate processing | |
| # Simple heuristic decomposition | |
| components = [] | |
| # Extract key phrases | |
| query_lower = query.lower() | |
| if "?" in query: | |
| components.append("Question type: Analytical") | |
| else: | |
| components.append("Question type: Directive") | |
| if "how" in query_lower: | |
| components.append("Focus: Methodology/Process") | |
| elif "what" in query_lower: | |
| components.append("Focus: Definition/Identification") | |
| elif "why" in query_lower: | |
| components.append("Focus: Causation/Reasoning") | |
| elif "should" in query_lower or "best" in query_lower: | |
| components.append("Focus: Decision/Recommendation") | |
| else: | |
| components.append("Focus: General inquiry") | |
| # Domain detection | |
| if any(term in query_lower for term in ["database", "sql", "nosql", "storage"]): | |
| components.append("Domain: Data Management") | |
| elif any(term in query_lower for term in ["architecture", "design", "pattern"]): | |
| components.append("Domain: System Architecture") | |
| elif any(term in query_lower for term in ["performance", "optimization", "speed"]): | |
| components.append("Domain: Performance Engineering") | |
| elif any(term in query_lower for term in ["scale", "distributed", "cluster"]): | |
| components.append("Domain: Distributed Systems") | |
| else: | |
| components.append("Domain: Software Engineering") | |
| # Complexity assessment | |
| word_count = len(query.split()) | |
| if word_count > 20: | |
| components.append("Complexity: High (detailed query)") | |
| elif word_count > 10: | |
| components.append("Complexity: Medium") | |
| else: | |
| components.append("Complexity: Low (concise query)") | |
| return components | |
| async def _analyze_components(self, components: list[str]) -> str: | |
| """Analyze the decomposed components.""" | |
| await asyncio.sleep(0.03) # Simulate processing | |
| # Generate analysis summary | |
| analysis_parts = [] | |
| for component in components: | |
| if "Focus:" in component: | |
| focus = component.split(":")[1].strip() | |
| analysis_parts.append(f"requires {focus.lower()} approach") | |
| elif "Domain:" in component: | |
| domain = component.split(":")[1].strip() | |
| analysis_parts.append(f"applies to {domain}") | |
| elif "Complexity:" in component: | |
| complexity = component.split(":")[1].strip().split()[0] | |
| analysis_parts.append(f"{complexity.lower()} complexity level") | |
| return "; ".join(analysis_parts) if analysis_parts else "Standard analysis" | |
| class TRMAgent: | |
| """Tree Reasoning Module - iterative refinement of responses.""" | |
| def __init__(self, llm_client): | |
| """Initialize with an LLM client. | |
| Args: | |
| llm_client: LLM client (MockLLMClient or HuggingFaceClient) | |
| """ | |
| self.llm_client = llm_client | |
| self.name = "TRM (Iterative Refinement)" | |
| self.max_iterations = 3 | |
| async def process(self, query: str) -> dict[str, Any]: | |
| """Process query using iterative refinement. | |
| Args: | |
| query: Input query to process | |
| Returns: | |
| Dictionary with response, confidence, and reasoning steps | |
| """ | |
| reasoning_steps = [] | |
| current_response = "" | |
| current_confidence = 0.0 | |
| # Iterative refinement loop | |
| for iteration in range(self.max_iterations): | |
| step_num = iteration + 1 | |
| # Generate or refine response | |
| if iteration == 0: | |
| # Initial response | |
| result = await self.llm_client.generate(prompt=query, context="") | |
| current_response = result["response"] | |
| current_confidence = result["confidence"] | |
| reasoning_steps.append( | |
| f"Iteration {step_num}: Initial response generated (confidence: {current_confidence:.1%})" | |
| ) | |
| else: | |
| # Refinement iteration | |
| refinement_result = await self._refine_response(query, current_response, iteration) | |
| current_response = refinement_result["response"] | |
| # Confidence typically improves with refinement | |
| confidence_improvement = min(0.1, (1 - current_confidence) * 0.3) | |
| current_confidence = min(0.95, current_confidence + confidence_improvement) | |
| reasoning_steps.append( | |
| f"Iteration {step_num}: {refinement_result['refinement_type']} " | |
| f"(confidence: {current_confidence:.1%})" | |
| ) | |
| # Check if confidence is high enough to stop | |
| if current_confidence > 0.85: | |
| reasoning_steps.append(f"Early termination: High confidence ({current_confidence:.1%}) achieved") | |
| break | |
| # Final reasoning step | |
| reasoning_steps.append(f"Final: Response refined through {len(reasoning_steps)} iterations") | |
| return { | |
| "response": current_response, | |
| "confidence": round(current_confidence, 3), | |
| "steps": reasoning_steps, | |
| "iterations_used": min(iteration + 1, self.max_iterations), | |
| "refinement_history": reasoning_steps, | |
| } | |
| async def _refine_response(self, query: str, current_response: str, iteration: int) -> dict[str, Any]: | |
| """Refine the current response.""" | |
| await asyncio.sleep(0.05) # Simulate refinement processing | |
| # Different refinement strategies based on iteration | |
| refinement_strategies = [ | |
| ("Clarity enhancement", "improve clarity and precision"), | |
| ("Detail expansion", "add technical depth and specifics"), | |
| ("Validation check", "verify accuracy and completeness"), | |
| ] | |
| strategy_name, strategy_action = refinement_strategies[iteration % len(refinement_strategies)] | |
| # Generate refined response | |
| refinement_prompt = f""" | |
| Original query: {query} | |
| Current response: {current_response} | |
| Refinement task: {strategy_action} | |
| """ | |
| result = await self.llm_client.generate( | |
| prompt=refinement_prompt, context=f"Refinement iteration {iteration + 1}" | |
| ) | |
| # Enhance the response based on strategy | |
| enhanced_response = current_response | |
| if strategy_name == "Clarity enhancement": | |
| enhanced_response = f"{current_response}. {result['response']}" | |
| elif strategy_name == "Detail expansion": | |
| enhanced_response = f"{current_response}. Furthermore, {result['response']}" | |
| else: # Validation | |
| enhanced_response = f"{current_response}. Validated: {result['response']}" | |
| # Truncate if too long | |
| if len(enhanced_response) > 300: | |
| enhanced_response = enhanced_response[:297] + "..." | |
| return {"response": enhanced_response, "refinement_type": strategy_name, "strategy_action": strategy_action} | |