""" Simplified agent implementations for Hugging Face Spaces demo. """ import asyncio from typing import Any class HRMAgent: """Hierarchical Reasoning Module - breaks down complex queries.""" def __init__(self, llm_client): """Initialize with an LLM client. Args: llm_client: LLM client (MockLLMClient or HuggingFaceClient) """ self.llm_client = llm_client self.name = "HRM (Hierarchical Reasoning)" async def process(self, query: str) -> dict[str, Any]: """Process query using hierarchical decomposition. Args: query: Input query to process Returns: Dictionary with response, confidence, and reasoning steps """ # Step 1: Decompose the query decomposition_steps = await self._decompose_query(query) # Step 2: Analyze each component analysis_results = await self._analyze_components(decomposition_steps) # Step 3: Synthesize hierarchical response llm_result = await self.llm_client.generate( prompt=f"Hierarchical analysis of: {query}", context=f"Components: {', '.join(decomposition_steps)}" ) # Compile reasoning steps reasoning_steps = [ f"1. Query decomposition: Identified {len(decomposition_steps)} key components", f"2. Component analysis: {analysis_results}", "3. Hierarchical synthesis: Combined insights from all levels", f"4. Confidence assessment: {llm_result['confidence']:.1%} based on component clarity", ] return { "response": llm_result["response"], "confidence": llm_result["confidence"], "steps": reasoning_steps, "components": decomposition_steps, "tokens_used": llm_result.get("tokens_used", 0), } async def _decompose_query(self, query: str) -> list[str]: """Decompose query into hierarchical components.""" # Simulate decomposition based on query structure await asyncio.sleep(0.05) # Simulate processing # Simple heuristic decomposition components = [] # Extract key phrases query_lower = query.lower() if "?" in query: components.append("Question type: Analytical") else: components.append("Question type: Directive") if "how" in query_lower: components.append("Focus: Methodology/Process") elif "what" in query_lower: components.append("Focus: Definition/Identification") elif "why" in query_lower: components.append("Focus: Causation/Reasoning") elif "should" in query_lower or "best" in query_lower: components.append("Focus: Decision/Recommendation") else: components.append("Focus: General inquiry") # Domain detection if any(term in query_lower for term in ["database", "sql", "nosql", "storage"]): components.append("Domain: Data Management") elif any(term in query_lower for term in ["architecture", "design", "pattern"]): components.append("Domain: System Architecture") elif any(term in query_lower for term in ["performance", "optimization", "speed"]): components.append("Domain: Performance Engineering") elif any(term in query_lower for term in ["scale", "distributed", "cluster"]): components.append("Domain: Distributed Systems") else: components.append("Domain: Software Engineering") # Complexity assessment word_count = len(query.split()) if word_count > 20: components.append("Complexity: High (detailed query)") elif word_count > 10: components.append("Complexity: Medium") else: components.append("Complexity: Low (concise query)") return components async def _analyze_components(self, components: list[str]) -> str: """Analyze the decomposed components.""" await asyncio.sleep(0.03) # Simulate processing # Generate analysis summary analysis_parts = [] for component in components: if "Focus:" in component: focus = component.split(":")[1].strip() analysis_parts.append(f"requires {focus.lower()} approach") elif "Domain:" in component: domain = component.split(":")[1].strip() analysis_parts.append(f"applies to {domain}") elif "Complexity:" in component: complexity = component.split(":")[1].strip().split()[0] analysis_parts.append(f"{complexity.lower()} complexity level") return "; ".join(analysis_parts) if analysis_parts else "Standard analysis" class TRMAgent: """Tree Reasoning Module - iterative refinement of responses.""" def __init__(self, llm_client): """Initialize with an LLM client. Args: llm_client: LLM client (MockLLMClient or HuggingFaceClient) """ self.llm_client = llm_client self.name = "TRM (Iterative Refinement)" self.max_iterations = 3 async def process(self, query: str) -> dict[str, Any]: """Process query using iterative refinement. Args: query: Input query to process Returns: Dictionary with response, confidence, and reasoning steps """ reasoning_steps = [] current_response = "" current_confidence = 0.0 # Iterative refinement loop for iteration in range(self.max_iterations): step_num = iteration + 1 # Generate or refine response if iteration == 0: # Initial response result = await self.llm_client.generate(prompt=query, context="") current_response = result["response"] current_confidence = result["confidence"] reasoning_steps.append( f"Iteration {step_num}: Initial response generated (confidence: {current_confidence:.1%})" ) else: # Refinement iteration refinement_result = await self._refine_response(query, current_response, iteration) current_response = refinement_result["response"] # Confidence typically improves with refinement confidence_improvement = min(0.1, (1 - current_confidence) * 0.3) current_confidence = min(0.95, current_confidence + confidence_improvement) reasoning_steps.append( f"Iteration {step_num}: {refinement_result['refinement_type']} " f"(confidence: {current_confidence:.1%})" ) # Check if confidence is high enough to stop if current_confidence > 0.85: reasoning_steps.append(f"Early termination: High confidence ({current_confidence:.1%}) achieved") break # Final reasoning step reasoning_steps.append(f"Final: Response refined through {len(reasoning_steps)} iterations") return { "response": current_response, "confidence": round(current_confidence, 3), "steps": reasoning_steps, "iterations_used": min(iteration + 1, self.max_iterations), "refinement_history": reasoning_steps, } async def _refine_response(self, query: str, current_response: str, iteration: int) -> dict[str, Any]: """Refine the current response.""" await asyncio.sleep(0.05) # Simulate refinement processing # Different refinement strategies based on iteration refinement_strategies = [ ("Clarity enhancement", "improve clarity and precision"), ("Detail expansion", "add technical depth and specifics"), ("Validation check", "verify accuracy and completeness"), ] strategy_name, strategy_action = refinement_strategies[iteration % len(refinement_strategies)] # Generate refined response refinement_prompt = f""" Original query: {query} Current response: {current_response} Refinement task: {strategy_action} """ result = await self.llm_client.generate( prompt=refinement_prompt, context=f"Refinement iteration {iteration + 1}" ) # Enhance the response based on strategy enhanced_response = current_response if strategy_name == "Clarity enhancement": enhanced_response = f"{current_response}. {result['response']}" elif strategy_name == "Detail expansion": enhanced_response = f"{current_response}. Furthermore, {result['response']}" else: # Validation enhanced_response = f"{current_response}. Validated: {result['response']}" # Truncate if too long if len(enhanced_response) > 300: enhanced_response = enhanced_response[:297] + "..." return {"response": enhanced_response, "refinement_type": strategy_name, "strategy_action": strategy_action}