File size: 9,224 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Simplified agent implementations for Hugging Face Spaces demo.
"""

import asyncio
from typing import Any


class HRMAgent:
    """Hierarchical Reasoning Module - breaks down complex queries."""

    def __init__(self, llm_client):
        """Initialize with an LLM client.

        Args:
            llm_client: LLM client (MockLLMClient or HuggingFaceClient)
        """
        self.llm_client = llm_client
        self.name = "HRM (Hierarchical Reasoning)"

    async def process(self, query: str) -> dict[str, Any]:
        """Process query using hierarchical decomposition.

        Args:
            query: Input query to process

        Returns:
            Dictionary with response, confidence, and reasoning steps
        """
        # Step 1: Decompose the query
        decomposition_steps = await self._decompose_query(query)

        # Step 2: Analyze each component
        analysis_results = await self._analyze_components(decomposition_steps)

        # Step 3: Synthesize hierarchical response
        llm_result = await self.llm_client.generate(
            prompt=f"Hierarchical analysis of: {query}", context=f"Components: {', '.join(decomposition_steps)}"
        )

        # Compile reasoning steps
        reasoning_steps = [
            f"1. Query decomposition: Identified {len(decomposition_steps)} key components",
            f"2. Component analysis: {analysis_results}",
            "3. Hierarchical synthesis: Combined insights from all levels",
            f"4. Confidence assessment: {llm_result['confidence']:.1%} based on component clarity",
        ]

        return {
            "response": llm_result["response"],
            "confidence": llm_result["confidence"],
            "steps": reasoning_steps,
            "components": decomposition_steps,
            "tokens_used": llm_result.get("tokens_used", 0),
        }

    async def _decompose_query(self, query: str) -> list[str]:
        """Decompose query into hierarchical components."""
        # Simulate decomposition based on query structure
        await asyncio.sleep(0.05)  # Simulate processing

        # Simple heuristic decomposition
        components = []

        # Extract key phrases
        query_lower = query.lower()

        if "?" in query:
            components.append("Question type: Analytical")
        else:
            components.append("Question type: Directive")

        if "how" in query_lower:
            components.append("Focus: Methodology/Process")
        elif "what" in query_lower:
            components.append("Focus: Definition/Identification")
        elif "why" in query_lower:
            components.append("Focus: Causation/Reasoning")
        elif "should" in query_lower or "best" in query_lower:
            components.append("Focus: Decision/Recommendation")
        else:
            components.append("Focus: General inquiry")

        # Domain detection
        if any(term in query_lower for term in ["database", "sql", "nosql", "storage"]):
            components.append("Domain: Data Management")
        elif any(term in query_lower for term in ["architecture", "design", "pattern"]):
            components.append("Domain: System Architecture")
        elif any(term in query_lower for term in ["performance", "optimization", "speed"]):
            components.append("Domain: Performance Engineering")
        elif any(term in query_lower for term in ["scale", "distributed", "cluster"]):
            components.append("Domain: Distributed Systems")
        else:
            components.append("Domain: Software Engineering")

        # Complexity assessment
        word_count = len(query.split())
        if word_count > 20:
            components.append("Complexity: High (detailed query)")
        elif word_count > 10:
            components.append("Complexity: Medium")
        else:
            components.append("Complexity: Low (concise query)")

        return components

    async def _analyze_components(self, components: list[str]) -> str:
        """Analyze the decomposed components."""
        await asyncio.sleep(0.03)  # Simulate processing

        # Generate analysis summary
        analysis_parts = []

        for component in components:
            if "Focus:" in component:
                focus = component.split(":")[1].strip()
                analysis_parts.append(f"requires {focus.lower()} approach")
            elif "Domain:" in component:
                domain = component.split(":")[1].strip()
                analysis_parts.append(f"applies to {domain}")
            elif "Complexity:" in component:
                complexity = component.split(":")[1].strip().split()[0]
                analysis_parts.append(f"{complexity.lower()} complexity level")

        return "; ".join(analysis_parts) if analysis_parts else "Standard analysis"


class TRMAgent:
    """Tree Reasoning Module - iterative refinement of responses."""

    def __init__(self, llm_client):
        """Initialize with an LLM client.

        Args:
            llm_client: LLM client (MockLLMClient or HuggingFaceClient)
        """
        self.llm_client = llm_client
        self.name = "TRM (Iterative Refinement)"
        self.max_iterations = 3

    async def process(self, query: str) -> dict[str, Any]:
        """Process query using iterative refinement.

        Args:
            query: Input query to process

        Returns:
            Dictionary with response, confidence, and reasoning steps
        """
        reasoning_steps = []
        current_response = ""
        current_confidence = 0.0

        # Iterative refinement loop
        for iteration in range(self.max_iterations):
            step_num = iteration + 1

            # Generate or refine response
            if iteration == 0:
                # Initial response
                result = await self.llm_client.generate(prompt=query, context="")
                current_response = result["response"]
                current_confidence = result["confidence"]
                reasoning_steps.append(
                    f"Iteration {step_num}: Initial response generated (confidence: {current_confidence:.1%})"
                )
            else:
                # Refinement iteration
                refinement_result = await self._refine_response(query, current_response, iteration)
                current_response = refinement_result["response"]

                # Confidence typically improves with refinement
                confidence_improvement = min(0.1, (1 - current_confidence) * 0.3)
                current_confidence = min(0.95, current_confidence + confidence_improvement)

                reasoning_steps.append(
                    f"Iteration {step_num}: {refinement_result['refinement_type']} "
                    f"(confidence: {current_confidence:.1%})"
                )

            # Check if confidence is high enough to stop
            if current_confidence > 0.85:
                reasoning_steps.append(f"Early termination: High confidence ({current_confidence:.1%}) achieved")
                break

        # Final reasoning step
        reasoning_steps.append(f"Final: Response refined through {len(reasoning_steps)} iterations")

        return {
            "response": current_response,
            "confidence": round(current_confidence, 3),
            "steps": reasoning_steps,
            "iterations_used": min(iteration + 1, self.max_iterations),
            "refinement_history": reasoning_steps,
        }

    async def _refine_response(self, query: str, current_response: str, iteration: int) -> dict[str, Any]:
        """Refine the current response."""
        await asyncio.sleep(0.05)  # Simulate refinement processing

        # Different refinement strategies based on iteration
        refinement_strategies = [
            ("Clarity enhancement", "improve clarity and precision"),
            ("Detail expansion", "add technical depth and specifics"),
            ("Validation check", "verify accuracy and completeness"),
        ]

        strategy_name, strategy_action = refinement_strategies[iteration % len(refinement_strategies)]

        # Generate refined response
        refinement_prompt = f"""
        Original query: {query}
        Current response: {current_response}
        Refinement task: {strategy_action}
        """

        result = await self.llm_client.generate(
            prompt=refinement_prompt, context=f"Refinement iteration {iteration + 1}"
        )

        # Enhance the response based on strategy
        enhanced_response = current_response
        if strategy_name == "Clarity enhancement":
            enhanced_response = f"{current_response}. {result['response']}"
        elif strategy_name == "Detail expansion":
            enhanced_response = f"{current_response}. Furthermore, {result['response']}"
        else:  # Validation
            enhanced_response = f"{current_response}. Validated: {result['response']}"

        # Truncate if too long
        if len(enhanced_response) > 300:
            enhanced_response = enhanced_response[:297] + "..."

        return {"response": enhanced_response, "refinement_type": strategy_name, "strategy_action": strategy_action}