language: bar
language_name: Bavarian
language_family: germanic_west_continental
tags:
- wikilangs
- nlp
- tokenizer
- embeddings
- n-gram
- markov
- wikipedia
- feature-extraction
- sentence-similarity
- tokenization
- n-grams
- markov-chain
- text-mining
- fasttext
- babelvec
- vocabulous
- vocabulary
- monolingual
- family-germanic_west_continental
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
- omarkamali/wikipedia-monthly
dataset_info:
name: wikipedia-monthly
description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
- name: best_compression_ratio
type: compression
value: 4.003
- name: best_isotropy
type: isotropy
value: 0.8432
- name: vocabulary_size
type: vocab
value: 0
generated: 2026-01-03T00:00:00.000Z
Bavarian - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Bavarian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
📋 Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.167x | 3.17 | 0.0430% | 1,042,115 |
| 16k | 3.477x | 3.48 | 0.0472% | 949,394 |
| 32k | 3.753x | 3.75 | 0.0509% | 879,530 |
| 64k | 4.003x 🏆 | 4.00 | 0.0543% | 824,531 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Forstern is a Gmoa im obaboarischn Landkroas Arrdeng. Im Netz Gemeinde Forstern ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁forst ern ▁is ▁a ▁gmoa ▁im ▁oba boarischn ▁landkroas ▁ar ... (+19 more) |
29 |
| 16k | ▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+15 more) |
25 |
| 32k | ▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+13 more) |
23 |
| 64k | ▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+12 more) |
22 |
Sample 2: Marlboro County. Obgruafa am 22. Feba is a County in South Carolina in da USA. B...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more) |
28 |
| 16k | ▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more) |
28 |
| 32k | ▁marl boro ▁county . ▁obgruafa ▁am ▁ 2 2 . ... (+17 more) |
27 |
| 64k | ▁marlboro ▁county . ▁obgruafa ▁am ▁ 2 2 . ▁feba ... (+16 more) |
26 |
Sample 3: Hill County is a County in Montana in da USA. Beleg Im Netz in Montana
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more) |
16 |
| 16k | ▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more) |
16 |
| 32k | ▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more) |
16 |
| 64k | ▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more) |
16 |
Key Findings
- Best Compression: 64k achieves 4.003x compression
- Lowest UNK Rate: 8k with 0.0430% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 27,199 | 14.73 | 109,780 | 13.0% | 31.5% |
| 2-gram | Subword | 361 🏆 | 8.50 | 7,796 | 60.7% | 98.3% |
| 3-gram | Word | 40,782 | 15.32 | 128,747 | 12.7% | 26.6% |
| 3-gram | Subword | 3,796 | 11.89 | 62,893 | 20.6% | 60.9% |
| 4-gram | Word | 56,976 | 15.80 | 186,218 | 13.7% | 25.1% |
| 4-gram | Subword | 27,410 | 14.74 | 362,482 | 9.1% | 28.4% |
| 5-gram | Word | 38,882 | 15.25 | 130,277 | 15.7% | 28.0% |
| 5-gram | Subword | 124,788 | 16.93 | 1,153,187 | 4.9% | 16.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | vo da |
26,508 |
| 2 | is a |
22,819 |
| 3 | in da |
22,392 |
| 4 | im netz |
14,484 |
| 5 | vo de |
13,424 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | beleg im netz |
3,530 |
| 2 | in da usa |
3,478 |
| 3 | da beziak hod |
2,393 |
| 4 | im netz in |
2,005 |
| 5 | sitz vo da |
1,888 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | beleg im netz in |
1,575 |
| 2 | da sitz vo da |
1,482 |
| 3 | is a county in |
1,429 |
| 4 | in da usa da |
1,407 |
| 5 | a katastralgmoa in da |
1,387 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | flächn ausgwiesn gwesn ende woarn |
1,385 |
| 2 | hektar ois laundwiatschoftliche flächn gnutzt |
1,385 |
| 3 | forstwirtschaftli gnutzte flächn ausgwiesn gwesn |
1,385 |
| 4 | hektar sand ois forstwirtschaftli gnutzte |
1,385 |
| 5 | ois laundwiatschoftliche flächn gnutzt und |
1,385 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | n _ |
701,951 |
| 2 | a _ |
667,528 |
| 3 | c h |
636,525 |
| 4 | _ d |
557,323 |
| 5 | e _ |
479,658 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | s c h |
303,728 |
| 2 | _ d e |
253,515 |
| 3 | _ d a |
172,902 |
| 4 | n d _ |
169,557 |
| 5 | u n d |
168,298 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d a _ |
132,086 |
| 2 | _ d e _ |
130,374 |
| 3 | u n d _ |
127,939 |
| 4 | _ u n d |
119,950 |
| 5 | i s c h |
99,379 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ u n d _ |
118,720 |
| 2 | _ v o _ d |
44,559 |
| 3 | _ i n _ d |
37,539 |
| 4 | i s c h e |
33,643 |
| 5 | _ d e s _ |
31,011 |
Key Findings
- Best Perplexity: 2-gram (subword) with 361
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~17% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.7076 | 1.633 | 5.17 | 567,851 | 29.2% |
| 1 | Subword | 0.9427 | 1.922 | 6.61 | 3,387 | 5.7% |
| 2 | Word | 0.2111 | 1.158 | 1.52 | 2,930,161 | 78.9% |
| 2 | Subword | 0.9146 | 1.885 | 5.83 | 22,370 | 8.5% |
| 3 | Word | 0.0663 | 1.047 | 1.11 | 4,443,260 | 93.4% |
| 3 | Subword | 0.8673 | 1.824 | 4.66 | 130,496 | 13.3% |
| 4 | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,937,652 | 97.8% |
| 4 | Subword | 0.7772 | 1.714 | 3.53 | 608,299 | 22.3% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
de gepidn und bbö 178 bukit tinggi 72 canon triplex a 7 hz ws touro collegeda effentlichn stroßn am 9 verletzter blick af de gebietskeapaschoftn in bayern gwen dem meearesspia...und alfonso cuarón timothy j nö öbb infra öbb pv tullnerfelder bahn rengschbuach grünthal geografie ...
Context Size 2:
vo da blaa oim aussa und entschdengan seine wichdigstn litararischn weak da voda vo da gmoa kirchhamis a kuaza a1 kuaza mit klima b launga und zwoa enklkinda da hoeneß uli z badin da katastralgmoa dobranberg zsammgrechnt 84 bauflächn mit 44 633 m und 58 gärten auf 135 526
Context Size 3:
in da usa beleg im netz in virginiabeleg im netz in missourida beziak hod 39 451 eihwohna da sitz vo da vawoitung is leoti da beziak hod 12 786
Context Size 4:
beleg im netz in nebraskada sitz vo da kroasvawoitung vo oanign landkroas liegt außahoib vom landkroas oft in da namasgleichn...is a county in wisconsin in da usa beleg im netz in der emilia romagna des europapreises
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_w.adaiwenieurioa_lidovicrönisere_hmbrkum_runís_
Context Size 2:
n_fc_rein_wieforoa_da_oschofferkeachr_koi'seybunds_
Context Size 3:
schburyan_no_san_d_dem_scusdecentisc_daument_in_und_zu
Context Size 4:
_da_letztn_de_ameri_de_marekd_om_auf_1und_botta_200+_maß_
Key Findings
- Best Predictability: Context-4 (word) with 97.8% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (608,299 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 212,365 |
| Total Tokens | 5,339,853 |
| Mean Frequency | 25.14 |
| Median Frequency | 3 |
| Frequency Std Dev | 712.67 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | de | 136,913 |
| 2 | da | 136,168 |
| 3 | und | 119,185 |
| 4 | in | 101,699 |
| 5 | a | 92,218 |
| 6 | vo | 91,584 |
| 7 | is | 86,664 |
| 8 | im | 70,677 |
| 9 | des | 33,854 |
| 10 | hod | 30,719 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | mechanisches | 2 |
| 2 | stabilisierungssystem | 2 |
| 3 | voeffentlecht | 2 |
| 4 | innpuls | 2 |
| 5 | buagstej | 2 |
| 6 | nuwenburg | 2 |
| 7 | kulturweges | 2 |
| 8 | spessartprojektes | 2 |
| 9 | terrassnfermig | 2 |
| 10 | tuamhigi | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9730 |
| R² (Goodness of Fit) | 0.999444 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 34.1% |
| Top 1,000 | 55.0% |
| Top 5,000 | 70.0% |
| Top 10,000 | 76.7% |
Key Findings
- Zipf Compliance: R²=0.9994 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 34.1% of corpus
- Long Tail: 202,365 words needed for remaining 23.3% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8296 | 0.3402 | N/A | N/A |
| mono_64d | 64 | 0.8410 | 0.2581 | N/A | N/A |
| mono_128d | 128 | 0.8432 🏆 | 0.1737 | N/A | N/A |
| aligned_32d | 32 | 0.8296 | 0.3341 | 0.0920 | 0.3960 |
| aligned_64d | 64 | 0.8410 | 0.2543 | 0.1940 | 0.6020 |
| aligned_128d | 128 | 0.8432 | 0.1862 | 0.2860 | 0.6780 |
Key Findings
- Best Isotropy: mono_128d with 0.8432 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2578. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 28.6% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.694 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-sc |
scharmbeck, schitznvaein, schiaf |
-sch |
scharmbeck, schitznvaein, schiaf |
Productive Suffixes
| Suffix | Examples |
|---|---|
-n |
şabran, unterwestern, weidesdn |
-en |
metallen, theologen, münzen |
-ng |
wondering, pisang, umwondlung |
-er |
gräberfelder, eichenauer, weydenhammer |
-ch |
hoierschbouch, weißabgleich, obergreutschach |
-ung |
umwondlung, auflösung, ausbroadung |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ster |
2.00x | 209 contexts | aster, ester, stern |
schl |
1.77x | 287 contexts | eschl, ischl, schlau |
schr |
1.99x | 137 contexts | schrit, schrim, schreg |
gsch |
1.77x | 181 contexts | gschai, gschdö, gschmo |
uach |
1.99x | 99 contexts | buach, huach, suach |
itsc |
2.19x | 64 contexts | gitsch, nitsch, kitsch |
icht |
1.54x | 345 contexts | eicht, wicht, richt |
atio |
2.26x | 45 contexts | ratio, natio, nation |
nisc |
1.77x | 126 contexts | nisch, nischn, nischt |
reic |
1.78x | 97 contexts | reich, reichd, reichl |
chof |
2.07x | 50 contexts | schof, schoft, schofn |
tion |
1.73x | 93 contexts | tione, aktion, notion |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-sc |
-n |
52 words | schbondan, schbüün |
-sc |
-er |
16 words | schatzgräber, schweinsteiger |
-sc |
-en |
13 words | schlampen, screven |
-sc |
-ng |
11 words | schädlbedeckung, schraubvabindung |
-sc |
-ch |
10 words | scharlach, schbruch |
-sc |
-ung |
4 words | schädlbedeckung, schraubvabindung |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| schnitzen | sch-nitz-en |
6.0 | nitz |
| enthaltenen | enthalt-en-en |
6.0 | enthalt |
| schwensen | sch-wens-en |
6.0 | wens |
| herrnhausen | herrnhaus-en |
4.5 | herrnhaus |
| schrottenberg | sch-rottenberg |
4.5 | rottenberg |
| heaschafamülien | heaschafamüli-en |
4.5 | heaschafamüli |
| fawoitung | fawoit-ung |
4.5 | fawoit |
| regulären | regulär-en |
4.5 | regulär |
| leitmeritzer | leitmeritz-er |
4.5 | leitmeritz |
| jungfrauen | jungfrau-en |
4.5 | jungfrau |
| gespenster | gespenst-er |
4.5 | gespenst |
| dynastien | dynasti-en |
4.5 | dynasti |
| referenten | referent-en |
4.5 | referent |
| birkenhainer | birkenhain-er |
4.5 | birkenhain |
| rettersheimer | rettersheim-er |
4.5 | rettersheim |
6.6 Linguistic Interpretation
Automated Insight: The language Bavarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.00x) |
| N-gram | 2-gram | Lowest perplexity (361) |
| Markov | Context-4 | Highest predictability (97.8%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
R² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- 🌐 Website: wikilangs.org
- 🤗 Models: huggingface.co/wikilangs
- 📊 Data: wikipedia-monthly
- 👤 Author: Omar Kamali
- 🤝 Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 19:01:37



















