Spaces:
Running
Running
| inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) { | |
| switch (type) { | |
| case GGML_TYPE_F32: | |
| return FP32; | |
| case GGML_TYPE_F16: | |
| return FP16; | |
| case GGML_TYPE_BF16: | |
| return BFLOAT; | |
| case GGML_TYPE_I8: | |
| return INT8; | |
| case GGML_TYPE_I32: | |
| return INT32; | |
| case GGML_TYPE_Q8_0: | |
| return INT8; | |
| default: | |
| GGML_ABORT("%s: fatal: unable to determine zTensor data type", | |
| __func__); | |
| break; | |
| } | |
| } | |
| inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc, | |
| zdnn_tensor_desc & tfm_desc, | |
| zdnn_ztensor & ztensor, | |
| const ggml_tensor * src, | |
| const int64_t * ne, | |
| const zdnn_data_layouts layout) { | |
| zdnn_init_pre_transformed_desc( | |
| layout, | |
| ggml_zdnn_type_mapping(src->type), | |
| &pre_tfm_desc, | |
| ne[3], ne[2], ne[1], ne[0] | |
| ); | |
| ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc)); | |
| ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor)); | |
| } | |
| inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor, | |
| void * buffer) { | |
| ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer)); | |
| } | |
| inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) { | |
| switch (tensor->op) { | |
| case GGML_OP_MUL_MAT: | |
| { | |
| zdnn_init_pre_transformed_desc( | |
| ZDNN_2D, | |
| ggml_zdnn_type_mapping(tensor->type), | |
| &buffer->pre_tfm_desc, | |
| tensor->ne[1], tensor->ne[0] | |
| ); | |
| } break; | |
| default: | |
| { | |
| // For 4D tensors, GGML uses NCHW layout. However, because zDNN | |
| // automatically transforms everything to NHWC, we will use it | |
| // directly to avoid the performance penalty changing the | |
| // layout and reshaping the tensor. | |
| zdnn_init_pre_transformed_desc( | |
| ZDNN_NHWC, | |
| ggml_zdnn_type_mapping(tensor->type), | |
| &buffer->pre_tfm_desc, | |
| tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0] | |
| ); | |
| // TODO: Consider adding a ggml check. | |
| // TODO: If tensor = 4D, use ZDNN_NCHW by default. | |
| // TODO: If tensor = 2D, use ZDNN_NHWC by default. | |
| } break; | |
| } | |
| ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc)); | |
| ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor)); | |
| } | |
| static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | |
| GGML_TENSOR_BINARY_OP_LOCALS; | |
| const enum ggml_type type = src0->type; | |
| GGML_ASSERT(ne0 == ne01); | |
| GGML_ASSERT(ne1 == ne11); | |
| GGML_ASSERT(ne2 == ne12); | |
| GGML_ASSERT(ne3 == ne13); | |
| // we don't support permuted src0 or src1 | |
| GGML_ASSERT(nb00 == ggml_type_size(type)); | |
| GGML_ASSERT(nb10 == ggml_type_size(src1->type)); | |
| // dst cannot be transposed or permuted | |
| GGML_ASSERT(nb0 == sizeof(float)); | |
| GGML_ASSERT(nb0 <= nb1); | |
| GGML_ASSERT(nb1 <= nb2); | |
| GGML_ASSERT(nb2 <= nb3); | |
| const ggml_tensor * weights = src0; | |
| const ggml_tensor * inputs = src1; | |
| ggml_tensor * output = dst; | |
| ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra; | |
| ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra; | |
| ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra; | |
| zdnn_tensor_desc ptd_bias, td_bias; | |
| zdnn_ztensor zt_bias; | |
| const int64_t weights_rows = ne01; | |
| const int64_t weights_cols = ne00; | |
| const int64_t inputs_rows = ne11; | |
| const int64_t inputs_cols = ne10; | |
| assert(inputs_cols == weights_cols); | |
| const int64_t output_rows = ne1; | |
| const int64_t output_cols = ne0; | |
| const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols }; | |
| ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D); | |
| void * bias_data = (void *)calloc(ne0, ggml_element_size(output)); | |
| if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data); | |
| if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data); | |
| ggml_zdnn_load_tensor(zt_bias, bias_data); | |
| // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", | |
| // __func__, weights_extra->name, | |
| // weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0], | |
| // weights_extra->pre_tfm_desc.dim1, | |
| // weights_extra->pre_tfm_desc.dim2, | |
| // weights_extra->pre_tfm_desc.dim3, | |
| // weights_extra->pre_tfm_desc.dim4); | |
| // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n", | |
| // __func__, inputs_extra->name, | |
| // inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0], | |
| // inputs_extra->pre_tfm_desc.dim1, | |
| // inputs_extra->pre_tfm_desc.dim2, | |
| // inputs_extra->pre_tfm_desc.dim3, | |
| // inputs_extra->pre_tfm_desc.dim4); | |
| GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]"); | |
| GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]"); | |
| GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]"); | |
| GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]"); | |
| ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias, | |
| false, true, MATMUL_OP_ADDITION, &output_extra->ztensor)); | |
| // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient. | |
| ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data)); | |
| ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias)); | |
| free(bias_data); | |
| } | |
| static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | |
| bool use_mul_mat_vec = | |
| (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16) | |
| && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 | |
| && src0->ne[0] % 2 == 0 && src1->ne[1] == 1; | |
| bool use_mul_mat_vec_q = | |
| ggml_is_quantized(src0->type) | |
| && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; | |
| bool use_mul_mat_q = | |
| ggml_is_quantized(src0->type) | |
| && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; | |
| // debug helpers | |
| // GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec); | |
| // GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q); | |
| // GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q); | |
| // GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); | |
| // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); | |
| // GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); | |
| // GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); | |
| // GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); | |
| // GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); | |
| if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 | |
| && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) | |
| && src1->ne[2] * src1->ne[3] > 1) { | |
| // general KQ + KQV multi-batch | |
| GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__); | |
| // ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst); | |
| } else if (use_mul_mat_vec) { | |
| GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__); | |
| // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr); | |
| } else if (use_mul_mat_vec_q) { | |
| GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__); | |
| // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1); | |
| } else if (use_mul_mat_q) { | |
| GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__); | |
| // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1); | |
| } else { | |
| // GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__); | |
| ggml_zdnn_mul_mat_op(ctx, src0, src1, dst); | |
| } | |
| } | |
| static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) { | |
| switch (dst->op) { | |
| case GGML_OP_MUL_MAT: | |
| ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst); | |
| break; | |
| default: | |
| return false; | |
| } | |
| return true; | |
| } | |
| static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) { | |
| ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context; | |
| ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context; | |
| ctx->gf = gf; | |
| for (int i = 0; i < gf->n_nodes; i++) { | |
| ggml_tensor * node = gf->nodes[i]; | |
| if (ggml_is_empty(node) | |
| || node->op == GGML_OP_NONE | |
| || node->op == GGML_OP_RESHAPE | |
| || node->op == GGML_OP_VIEW | |
| || node->op == GGML_OP_PERMUTE | |
| || node->op == GGML_OP_TRANSPOSE) { | |
| continue; | |
| } | |
| bool ok = ggml_zdnn_compute_forward(ctx, node); | |
| if (!ok) { | |
| GGML_LOG_ERROR("%s: unsupported op %s (%s)\n", | |
| __func__, node->name, ggml_op_name(node->op)); | |
| } | |
| GGML_ASSERT(ok); | |
| } | |
| return GGML_STATUS_SUCCESS; | |
| } | |
| static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) { | |
| switch (op->op) { | |
| case GGML_OP_NONE: | |
| case GGML_OP_RESHAPE: | |
| case GGML_OP_VIEW: | |
| case GGML_OP_TRANSPOSE: | |
| case GGML_OP_PERMUTE: | |
| return true; | |
| case GGML_OP_MUL_MAT: | |
| { | |
| const ggml_tensor * src0 = op->src[0]; | |
| const ggml_tensor * src1 = op->src[1]; | |
| const int64_t ne10 = src1->ne[0]; | |
| const int64_t ne0 = op->ne[0]; | |
| const int64_t ne1 = op->ne[1]; | |
| const int64_t max_batch = ctx_dev->max_size; | |
| return ggml_is_matrix(src0) && | |
| ggml_is_matrix(src1) && | |
| ggml_is_contiguous(src0) && | |
| ggml_is_contiguous(src1) && | |
| src0->view_src == nullptr && src1->view_src == nullptr && | |
| src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && | |
| (ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch); | |
| } break; | |
| default: | |
| return false; | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // | |
| // globals | |
| // | |
| // initialised in ggml_backend_zdnn_reg | |
| static ggml_backend_reg g_ggml_backend_zdnn_reg; | |
| static ggml_backend_device g_ggml_backend_zdnn_device; | |
| static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = { | |
| /* .zdnn_device = */ 0, | |
| /* .zdnn_device_ref_count = */ 0, | |
| /* .has_parmblkformat_0 = */ false, | |
| /* .has_parmblkformat_1 = */ false, | |
| /* .max_size = */ 0, | |
| /* .name = */ "", | |
| }; | |
| static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) { | |
| assert(ctx != NULL); | |
| if (ctx->zdnn_device == 0) { | |
| ctx->zdnn_device = 1; | |
| } | |
| if (ctx->zdnn_device >= 1) { | |
| ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0); | |
| ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1); | |
| ctx->max_size = zdnn_get_nnpa_max_dim_idx_size(); | |
| strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1); | |
| } | |
| ctx->zdnn_device_ref_count++; | |
| return ctx->zdnn_device; | |
| } | |
| static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) { | |
| assert(ctx != NULL); | |
| assert(ctx->zdnn_device_ref_count > 0); | |
| ctx->zdnn_device_ref_count--; | |
| if (ctx->zdnn_device_ref_count == 0) { | |
| if (ctx->zdnn_device >= 0) { | |
| ctx->zdnn_device = 0; | |
| } | |
| } | |
| } | |
| static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) { | |
| GGML_LOG_INFO("%s: allocating\n", __func__); | |
| GGML_LOG_INFO("%s: found 1 device\n", __func__); | |
| zdnn_init(); | |
| ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context(); | |
| ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; | |
| int device = 1; | |
| GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name); | |
| ctx->device = device; | |
| GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name); | |
| GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false"); | |
| GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false"); | |
| ctx->gf = nullptr; | |
| return ctx; | |
| } | |
| static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) { | |
| GGML_LOG_INFO("%s: deallocating\n", __func__); | |
| delete ctx; | |
| } | |
| // | |
| // backend interface | |
| // | |
| static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) { | |
| ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; | |
| for (int i = 0; i < ctx->n_buffers; i++) { | |
| if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) { | |
| ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor)); | |
| } | |
| } | |
| delete ctx; | |
| } | |
| static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) { | |
| ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; | |
| return ctx->all_data; | |
| } | |
| static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { | |
| if (tensor->view_src != NULL) { | |
| assert(tensor->view_src->buffer->buft == buffer->buft); | |
| return GGML_STATUS_SUCCESS; | |
| } | |
| ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; | |
| const int64_t tsize = ggml_nbytes(tensor); | |
| int buffer_idx = ctx->n_buffers; | |
| std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>(); | |
| zdnn_buffer->data = tensor->data; | |
| zdnn_buffer->size = tsize; | |
| strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1); | |
| ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor); | |
| tensor->extra = zdnn_buffer.get(); | |
| ctx->buffers.push_back(std::move(zdnn_buffer)); | |
| ctx->n_buffers++; | |
| // GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n", | |
| // __func__, tensor->name, buffer_idx, tsize); | |
| return GGML_STATUS_SUCCESS; | |
| } | |
| static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { | |
| memset((char *)tensor->data + offset, value, size); | |
| GGML_UNUSED(buffer); | |
| } | |
| static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
| memcpy((char *)tensor->data + offset, data, size); | |
| GGML_UNUSED(buffer); | |
| } | |
| static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { | |
| memcpy(data, (const char *)tensor->data + offset, size); | |
| GGML_UNUSED(buffer); | |
| } | |
| static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { | |
| ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context; | |
| memset(ctx->all_data, value, ctx->all_size); | |
| } | |
| static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = { | |
| /* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer, | |
| /* .get_base = */ ggml_backend_zdnn_buffer_get_base, | |
| /* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor, | |
| /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor, | |
| /* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor, | |
| /* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor, | |
| /* .cpy_tensor = */ NULL, | |
| /* .clear = */ ggml_backend_zdnn_buffer_clear, | |
| /* .reset = */ NULL, | |
| }; | |
| // | |
| // default buffer type | |
| // | |
| static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
| return GGML_ZDNN_NAME; | |
| GGML_UNUSED(buft); | |
| } | |
| static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
| ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); | |
| const size_t size_page = sysconf(_SC_PAGESIZE); | |
| size_t size_aligned = size; | |
| if ((size_aligned % size_page) != 0) { | |
| size_aligned += size_page - (size_aligned % size_page); | |
| } | |
| ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context; | |
| GGML_ASSERT(ctx_dev->zdnn_device >= 0); | |
| int device = ctx_dev->zdnn_device; GGML_UNUSED(device); | |
| ctx->all_data = ggml_aligned_malloc(size_aligned); | |
| ctx->all_size = size_aligned; | |
| ctx->owned = true; | |
| ctx->n_buffers = 1; | |
| if (ctx->all_data != NULL) { | |
| std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>(); | |
| zdnn_buffer->data = ctx->all_data; | |
| zdnn_buffer->size = size_aligned; | |
| ctx->buffers.push_back(std::move(zdnn_buffer)); | |
| } | |
| if (size_aligned > 0 && (ctx->all_data == NULL)) { | |
| GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n", | |
| __func__, size_aligned / 1024.0 / 1024.0); | |
| delete ctx; | |
| return NULL; | |
| } | |
| return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size); | |
| } | |
| static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { | |
| return 256; | |
| GGML_UNUSED(buft); | |
| } | |
| static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) { | |
| return true; | |
| GGML_UNUSED(buft); | |
| } | |
| ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) { | |
| static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = { | |
| /* .iface = */ { | |
| /* .get_name = */ ggml_backend_zdnn_buffer_type_get_name, | |
| /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, | |
| /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, | |
| /* .get_max_size = */ NULL, | |
| /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
| /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, | |
| }, | |
| /* .device = */ &g_ggml_backend_zdnn_device, | |
| /* .context = */ NULL, | |
| }; | |
| return &ggml_backend_buffer_type_zdnn; | |
| } | |
| static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) { | |
| return GGML_ZDNN_NAME "_Mapped"; | |
| GGML_UNUSED(buft); | |
| } | |
| static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) { | |
| static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = { | |
| /* .iface = */ { | |
| /* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name, | |
| /* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer, | |
| /* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment, | |
| /* .get_max_size = */ NULL, | |
| /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes | |
| /* .is_host = */ ggml_backend_zdnn_buffer_type_is_host, | |
| }, | |
| /* .device = */ &g_ggml_backend_zdnn_device, | |
| /* .context = */ NULL, | |
| }; | |
| return &ggml_backend_buffer_from_ptr_type_zdnn; | |
| } | |
| // | |
| // backend | |
| // | |
| static const char * ggml_backend_zdnn_name(ggml_backend_t backend) { | |
| return GGML_ZDNN_NAME; | |
| GGML_UNUSED(backend); | |
| } | |
| static void ggml_backend_zdnn_free(ggml_backend_t backend) { | |
| ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context; | |
| ggml_zdnn_free(ctx); | |
| free(backend); | |
| } | |
| static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { | |
| return ggml_zdnn_graph_compute(backend, cgraph); | |
| } | |
| static ggml_backend_i ggml_backend_zdnn_i = { | |
| /* .get_name = */ ggml_backend_zdnn_name, | |
| /* .free = */ ggml_backend_zdnn_free, | |
| /* .set_tensor_async = */ NULL, | |
| /* .get_tensor_async = */ NULL, | |
| /* .cpy_tensor_async = */ NULL, | |
| /* .synchronize = */ NULL, | |
| /* .graph_plan_create = */ NULL, | |
| /* .graph_plan_free = */ NULL, | |
| /* .graph_plan_update = */ NULL, | |
| /* .graph_plan_compute = */ NULL, | |
| /* .graph_compute = */ ggml_backend_zdnn_graph_compute, | |
| /* .event_record = */ NULL, | |
| /* .event_wait = */ NULL, | |
| }; | |
| static ggml_guid_t ggml_backend_zdnn_guid(void) { | |
| static const char * guid_str = "IBM-ZDNN-ACCELER"; | |
| return reinterpret_cast<ggml_guid_t>((void *)guid_str); | |
| } | |
| // TODO: remove in the future | |
| ggml_backend_t ggml_backend_zdnn_init(void) { | |
| ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0); | |
| ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); | |
| if (ctx == NULL) { | |
| GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); | |
| return NULL; | |
| } | |
| ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend)); | |
| *backend = (ggml_backend) { | |
| /* .guid = */ ggml_backend_zdnn_guid(), | |
| /* .iface = */ ggml_backend_zdnn_i, | |
| /* .device = */ dev, | |
| /* .context = */ ctx, | |
| }; | |
| return backend; | |
| } | |
| bool ggml_backend_is_zdnn(ggml_backend_t backend) { | |
| return backend != NULL && | |
| ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid()); | |
| GGML_UNUSED(backend); | |
| } | |
| // | |
| // backend device | |
| // | |
| static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) { | |
| return GGML_ZDNN_NAME; | |
| GGML_UNUSED(dev); | |
| } | |
| static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) { | |
| return "IBM Z Neural Network Processing Assist (NNPA)"; | |
| } | |
| static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { | |
| *free = 0; | |
| *total = 0; | |
| } | |
| static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) { | |
| return GGML_BACKEND_DEVICE_TYPE_ACCEL; | |
| GGML_UNUSED(dev); | |
| } | |
| static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) { | |
| props->name = ggml_backend_zdnn_device_get_name(dev); | |
| props->description = ggml_backend_zdnn_device_get_description(dev); | |
| props->type = ggml_backend_zdnn_device_get_type(dev); | |
| ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total); | |
| props->caps = (ggml_backend_dev_caps) { | |
| /* .async = */ false, | |
| /* .host_buffer = */ false, | |
| /* .buffer_from_host_ptr = */ true, | |
| /* .events = */ false, | |
| }; | |
| } | |
| static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) { | |
| ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev); | |
| if (ctx == NULL) { | |
| GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__); | |
| return NULL; | |
| } | |
| ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend)); | |
| *backend = (ggml_backend) { | |
| /* .guid = */ ggml_backend_zdnn_guid(), | |
| /* .iface = */ ggml_backend_zdnn_i, | |
| /* .device = */ dev, | |
| /* .context = */ ctx, | |
| }; | |
| return backend; | |
| GGML_UNUSED(params); | |
| } | |
| static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) { | |
| return ggml_backend_zdnn_buffer_type(); | |
| GGML_UNUSED(dev); | |
| } | |
| static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { | |
| ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context(); | |
| ctx->all_data = ptr; | |
| ctx->all_size = size; | |
| ctx->owned = false; | |
| ctx->n_buffers = 0; | |
| const size_t size_page = sysconf(_SC_PAGESIZE); | |
| // page-align the data ptr | |
| { | |
| const uintptr_t offs = (uintptr_t) ptr % size_page; | |
| ptr = (void *)((char *)ptr - offs); | |
| size += offs; | |
| } | |
| size_t size_aligned = size; | |
| if ((size_aligned % size_page) != 0) { | |
| size_aligned += size_page - (size_aligned % size_page); | |
| } | |
| ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context; | |
| GGML_ASSERT(ctx_dev->zdnn_device >= 0); | |
| int device = ctx_dev->zdnn_device; GGML_UNUSED(device); | |
| std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>(); | |
| zdnn_buffer->data = ptr; | |
| zdnn_buffer->size = size; | |
| ctx->buffers.push_back(std::move(zdnn_buffer)); | |
| GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n", | |
| __func__, size_aligned / 1024.0 / 1024.0); | |
| ++ctx->n_buffers; | |
| return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size); | |
| } | |
| static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { | |
| ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context; | |
| return ggml_zdnn_supports_op(ctx_dev, op); | |
| } | |
| static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { | |
| return | |
| buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name || | |
| buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name; | |
| GGML_UNUSED(dev); | |
| } | |
| static ggml_backend_device_i ggml_backend_zdnn_device_i = { | |
| /* .get_name = */ ggml_backend_zdnn_device_get_name, | |
| /* .get_description = */ ggml_backend_zdnn_device_get_description, | |
| /* .get_memory = */ ggml_backend_zdnn_device_get_memory, | |
| /* .get_type = */ ggml_backend_zdnn_device_get_type, | |
| /* .get_props = */ ggml_backend_zdnn_device_get_props, | |
| /* .init_backend = */ ggml_backend_zdnn_device_init, | |
| /* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type, | |
| /* .get_host_buffer_type = */ NULL, | |
| /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr, | |
| /* .supports_op = */ ggml_backend_zdnn_device_supports_op, | |
| /* .supports_buft = */ ggml_backend_zdnn_device_supports_buft, | |
| /* .offload_op = */ NULL, | |
| /* .event_new = */ NULL, | |
| /* .event_free = */ NULL, | |
| /* .event_synchronize = */ NULL, | |
| }; | |
| // | |
| // backend registry | |
| // | |
| static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) { | |
| return GGML_ZDNN_NAME; | |
| GGML_UNUSED(reg); | |
| } | |
| static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) { | |
| if (!zdnn_is_nnpa_installed()) { | |
| return 0; | |
| } | |
| return 1; | |
| GGML_UNUSED(reg); | |
| } | |
| static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) { | |
| GGML_ASSERT(index == 0); | |
| return &g_ggml_backend_zdnn_device; | |
| GGML_UNUSED(reg); | |
| GGML_UNUSED(index); | |
| } | |
| static ggml_backend_feature g_ggml_backend_zdnn_features[] = { | |
| { "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" }, | |
| { "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" }, | |
| { "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" }, | |
| { NULL, NULL }, | |
| }; | |
| static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) { | |
| return g_ggml_backend_zdnn_features; | |
| GGML_UNUSED(reg); | |
| } | |
| static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) { | |
| if (strcmp(name, "ggml_backend_get_features") == 0) { | |
| return (void *) ggml_backend_zdnn_get_features; | |
| } | |
| return NULL; | |
| GGML_UNUSED(reg); | |
| } | |
| static ggml_backend_reg_i ggml_backend_zdnn_reg_i = { | |
| /* .get_name = */ ggml_backend_zdnn_reg_get_name, | |
| /* .get_device_count = */ ggml_backend_zdnn_reg_device_count, | |
| /* .get_device = */ ggml_backend_zdnn_reg_device_get, | |
| /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address, | |
| }; | |
| static void ggml_zdnn_cleanup(void) { | |
| ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main); | |
| } | |
| // TODO: make thread-safe | |
| ggml_backend_reg_t ggml_backend_zdnn_reg(void) { | |
| ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main); | |
| // register cleanup callback | |
| atexit(ggml_zdnn_cleanup); | |
| { | |
| g_ggml_backend_zdnn_reg = (ggml_backend_reg) { | |
| /* .api_version = */ GGML_ZDNN_VERSION, | |
| /* .iface = */ ggml_backend_zdnn_reg_i, | |
| /* .context = */ NULL, | |
| }; | |
| g_ggml_backend_zdnn_device = (ggml_backend_device) { | |
| /* .iface = */ ggml_backend_zdnn_device_i, | |
| /* .reg = */ &g_ggml_backend_zdnn_reg, | |
| /* .context = */ &g_ggml_ctx_dev_main, | |
| }; | |
| return &g_ggml_backend_zdnn_reg; | |
| } | |
| } | |
| GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg) | |