File size: 31,225 Bytes
6dd510c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#include "zdnn.h"
#include "ggml-zdnn.h"
#include "ggml-zdnn-impl.h"

#include "ggml-impl.h"
#include "ggml-backend-impl.h"

#include <vector>
#include <memory>
#include <csignal>
#include <unistd.h>

inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
    switch (type) {
        case GGML_TYPE_F32:
            return FP32;
        case GGML_TYPE_F16:
            return FP16;
        case GGML_TYPE_BF16:
            return BFLOAT;
        case GGML_TYPE_I8:
            return INT8;
        case GGML_TYPE_I32:
            return INT32;
        case GGML_TYPE_Q8_0:
            return INT8;
        default:
            GGML_ABORT("%s: fatal: unable to determine zTensor data type",
                       __func__);
            break;
    }
}

inline void ggml_zdnn_create_tensor(zdnn_tensor_desc  & pre_tfm_desc,
                                    zdnn_tensor_desc  & tfm_desc,
                                    zdnn_ztensor      & ztensor,
                              const ggml_tensor       * src,
                              const int64_t           * ne,
                              const zdnn_data_layouts   layout) {
    zdnn_init_pre_transformed_desc(
        layout,
        ggml_zdnn_type_mapping(src->type),
        &pre_tfm_desc,
        ne[3], ne[2], ne[1], ne[0]
    );

    ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
    ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
}

inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
                                          void * buffer) {
    ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
}

inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) {
    switch (tensor->op) {
        case GGML_OP_MUL_MAT:
            {
                zdnn_init_pre_transformed_desc(
                    ZDNN_2D,
                    ggml_zdnn_type_mapping(tensor->type),
                    &buffer->pre_tfm_desc,
                    tensor->ne[1], tensor->ne[0]
                );
            } break;

        default:
            {
                // For 4D tensors, GGML uses NCHW layout. However, because zDNN
                // automatically transforms everything to NHWC, we will use it
                // directly to avoid the performance penalty changing the
                // layout and reshaping the tensor.
                zdnn_init_pre_transformed_desc(
                    ZDNN_NHWC,
                    ggml_zdnn_type_mapping(tensor->type),
                    &buffer->pre_tfm_desc,
                    tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
                );

                // TODO: Consider adding a ggml check.
                // TODO: If tensor = 4D, use ZDNN_NCHW by default.
                // TODO: If tensor = 2D, use ZDNN_NHWC by default.
            } break;
    }

    ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
    ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
}

static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_TENSOR_BINARY_OP_LOCALS;

    const enum ggml_type type = src0->type;

    GGML_ASSERT(ne0 == ne01);
    GGML_ASSERT(ne1 == ne11);
    GGML_ASSERT(ne2 == ne12);
    GGML_ASSERT(ne3 == ne13);

    // we don't support permuted src0 or src1
    GGML_ASSERT(nb00 == ggml_type_size(type));
    GGML_ASSERT(nb10 == ggml_type_size(src1->type));

    // dst cannot be transposed or permuted
    GGML_ASSERT(nb0 == sizeof(float));
    GGML_ASSERT(nb0 <= nb1);
    GGML_ASSERT(nb1 <= nb2);
    GGML_ASSERT(nb2 <= nb3);

    const ggml_tensor * weights = src0;
    const ggml_tensor * inputs  = src1;
          ggml_tensor * output  = dst;

    ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra;
    ggml_backend_zdnn_buffer * inputs_extra  = (ggml_backend_zdnn_buffer *)inputs->extra;
    ggml_backend_zdnn_buffer * output_extra  = (ggml_backend_zdnn_buffer *)output->extra;

    zdnn_tensor_desc ptd_bias, td_bias;
    zdnn_ztensor zt_bias;

    const int64_t weights_rows = ne01;
    const int64_t weights_cols = ne00;
    const int64_t inputs_rows  = ne11;
    const int64_t inputs_cols  = ne10;

    assert(inputs_cols == weights_cols);

    const int64_t output_rows = ne1;
    const int64_t output_cols = ne0;

    const int64_t bias_dim  [GGML_MAX_DIMS]  = { 1, 1, 1, output_cols };
    ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D);

    void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
    if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data);
    if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data);
    ggml_zdnn_load_tensor(zt_bias, bias_data);

    // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
    //               __func__, weights_extra->name,
    //               weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0],
    //               weights_extra->pre_tfm_desc.dim1,
    //               weights_extra->pre_tfm_desc.dim2,
    //               weights_extra->pre_tfm_desc.dim3,
    //               weights_extra->pre_tfm_desc.dim4);

    // GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
    //               __func__, inputs_extra->name,
    //               inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0],
    //               inputs_extra->pre_tfm_desc.dim1,
    //               inputs_extra->pre_tfm_desc.dim2,
    //               inputs_extra->pre_tfm_desc.dim3,
    //               inputs_extra->pre_tfm_desc.dim4);

    GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]");
    GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]");
    GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1  == inputs->ne[0]  && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]");
    GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2  == inputs->ne[1]  && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]");

    ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias,
                                        false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
    // TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient.
    ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data));

    ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias));
    free(bias_data);
}

static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    bool use_mul_mat_vec =
        (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
        && src0->ne[0] % 2 == 0 && src1->ne[1] == 1;

    bool use_mul_mat_vec_q =
        ggml_is_quantized(src0->type)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;

    bool use_mul_mat_q =
        ggml_is_quantized(src0->type)
        && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;

    // debug helpers
    // GGML_LOG_INFO("%s: use_mul_mat_vec   = %d\n", __func__, use_mul_mat_vec);
    // GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
    // GGML_LOG_INFO("%s: use_mul_mat_q     = %d\n", __func__, use_mul_mat_q);
    // GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
    // GGML_LOG_INFO("%s:       %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
    // GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
    // GGML_LOG_INFO("%s:       %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
    // GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
    // GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);

    if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
        && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
        && src1->ne[2] * src1->ne[3] > 1) {
        // general KQ + KQV multi-batch
        GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
        // ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
    } else if (use_mul_mat_vec) {
        GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
        // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
    } else if (use_mul_mat_vec_q) {
        GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
        // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
    } else if (use_mul_mat_q) {
        GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
        // ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
    } else {
        // GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
        ggml_zdnn_mul_mat_op(ctx, src0, src1, dst);
    }
}

static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
    switch (dst->op) {
        case GGML_OP_MUL_MAT:
            ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
            break;

        default:
            return false;
    }

    return true;
}

static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) {
    ggml_backend_zdnn_context        * ctx     = (       ggml_backend_zdnn_context *)backend->context;
    ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context;

    ctx->gf = gf;
    for (int i = 0; i < gf->n_nodes; i++) {
        ggml_tensor * node = gf->nodes[i];

        if (ggml_is_empty(node)
            || node->op == GGML_OP_NONE
            || node->op == GGML_OP_RESHAPE
            || node->op == GGML_OP_VIEW
            || node->op == GGML_OP_PERMUTE
            || node->op == GGML_OP_TRANSPOSE) {
            continue;
        }

        bool ok = ggml_zdnn_compute_forward(ctx, node);
        if (!ok) {
            GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
                           __func__, node->name, ggml_op_name(node->op));
        }

        GGML_ASSERT(ok);
    }

    return GGML_STATUS_SUCCESS;
}

static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) {
    switch (op->op) {
        case GGML_OP_NONE:
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_TRANSPOSE:
        case GGML_OP_PERMUTE:
            return true;

        case GGML_OP_MUL_MAT:
            {
                const ggml_tensor * src0 = op->src[0];
                const ggml_tensor * src1 = op->src[1];

                const int64_t ne10 = src1->ne[0];
                const int64_t ne0 = op->ne[0];
                const int64_t ne1 = op->ne[1];

                const int64_t max_batch = ctx_dev->max_size;

                return ggml_is_matrix(src0) &&
                       ggml_is_matrix(src1) &&
                       ggml_is_contiguous(src0) &&
                       ggml_is_contiguous(src1) &&
                       src0->view_src == nullptr && src1->view_src == nullptr &&
                       src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
                       (ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch);
            } break;

        default:
            return false;
    }
}

////////////////////////////////////////////////////////////////////////////////

//
// globals
//

// initialised in ggml_backend_zdnn_reg
static ggml_backend_reg    g_ggml_backend_zdnn_reg;
static ggml_backend_device g_ggml_backend_zdnn_device;

static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = {
    /* .zdnn_device           = */ 0,
    /* .zdnn_device_ref_count = */ 0,
    /* .has_parmblkformat_0   = */ false,
    /* .has_parmblkformat_1   = */ false,
    /* .max_size              = */ 0,
    /* .name                  = */ "",
};

static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) {
    assert(ctx != NULL);

    if (ctx->zdnn_device == 0) {
        ctx->zdnn_device = 1;
    }

    if (ctx->zdnn_device >= 1) {
        ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0);
        ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1);
        ctx->max_size = zdnn_get_nnpa_max_dim_idx_size();
        strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
    }

    ctx->zdnn_device_ref_count++;
    return ctx->zdnn_device;
}

static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) {
    assert(ctx != NULL);
    assert(ctx->zdnn_device_ref_count > 0);

    ctx->zdnn_device_ref_count--;
    if (ctx->zdnn_device_ref_count == 0) {
        if (ctx->zdnn_device >= 0) {
            ctx->zdnn_device = 0;
        }
    }
}

static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
    GGML_LOG_INFO("%s: allocating\n", __func__);
    GGML_LOG_INFO("%s: found 1 device\n", __func__);

    #ifdef STATIC_LIB
    zdnn_init();
    #endif

    ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context();
    ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;

    int device = 1;
    GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name);

    ctx->device = device;
    GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name);
    GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false");
    GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false");

    ctx->gf = nullptr;

    return ctx;
}

static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) {
    GGML_LOG_INFO("%s: deallocating\n", __func__);
    delete ctx;
}

//
// backend interface
//

static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;

    for (int i = 0; i < ctx->n_buffers; i++) {
        if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) {
            ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor));
        }
    }

    delete ctx;
}

static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
    ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
    return ctx->all_data;
}

static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
    if (tensor->view_src != NULL) {
        assert(tensor->view_src->buffer->buft == buffer->buft);
        return GGML_STATUS_SUCCESS;
    }

    ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;

    const int64_t tsize = ggml_nbytes(tensor);
    int buffer_idx = ctx->n_buffers;

    std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
    zdnn_buffer->data = tensor->data;
    zdnn_buffer->size = tsize;
    strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1);

    ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor);
    tensor->extra = zdnn_buffer.get();

    ctx->buffers.push_back(std::move(zdnn_buffer));
    ctx->n_buffers++;

    // GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n",
    //               __func__, tensor->name, buffer_idx, tsize);

    return GGML_STATUS_SUCCESS;
}

static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
    memset((char *)tensor->data + offset, value, size);

    GGML_UNUSED(buffer);
}

static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    memcpy((char *)tensor->data + offset, data, size);

    GGML_UNUSED(buffer);
}

static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    memcpy(data, (const char *)tensor->data + offset, size);

    GGML_UNUSED(buffer);
}

static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;

    memset(ctx->all_data, value, ctx->all_size);
}

static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
    /* .free_buffer   = */ ggml_backend_zdnn_buffer_free_buffer,
    /* .get_base      = */ ggml_backend_zdnn_buffer_get_base,
    /* .init_tensor   = */ ggml_backend_zdnn_buffer_init_tensor,
    /* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
    /* .set_tensor    = */ ggml_backend_zdnn_buffer_set_tensor,
    /* .get_tensor    = */ ggml_backend_zdnn_buffer_get_tensor,
    /* .cpy_tensor    = */ NULL,
    /* .clear         = */ ggml_backend_zdnn_buffer_clear,
    /* .reset         = */ NULL,
};

//
// default buffer type
//

static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    return GGML_ZDNN_NAME;

    GGML_UNUSED(buft);
}

static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();

    const size_t size_page = sysconf(_SC_PAGESIZE);

    size_t size_aligned = size;
    if ((size_aligned % size_page) != 0) {
        size_aligned += size_page - (size_aligned % size_page);
    }

    ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context;

    GGML_ASSERT(ctx_dev->zdnn_device >= 0);
    int device = ctx_dev->zdnn_device; GGML_UNUSED(device);

    ctx->all_data  = ggml_aligned_malloc(size_aligned);
    ctx->all_size  = size_aligned;
    ctx->owned     = true;
    ctx->n_buffers = 1;

    if (ctx->all_data != NULL) {
        std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
        zdnn_buffer->data = ctx->all_data;
        zdnn_buffer->size = size_aligned;
        ctx->buffers.push_back(std::move(zdnn_buffer));
    }

    if (size_aligned > 0 && (ctx->all_data == NULL)) {
        GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n",
                       __func__, size_aligned / 1024.0 / 1024.0);
        delete ctx;
        return NULL;
    }

    return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
}

static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
    return 256;

    GGML_UNUSED(buft);
}

static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
    return true;

    GGML_UNUSED(buft);
}

ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
    static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
        /* .iface   = */ {
            /* .get_name       = */ ggml_backend_zdnn_buffer_type_get_name,
            /* .alloc_buffer   = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
            /* .get_alignment  = */ ggml_backend_zdnn_buffer_type_get_alignment,
            /* .get_max_size   = */ NULL,
            /* .get_alloc_size = */ NULL,  // defaults to ggml_nbytes
            /* .is_host        = */ ggml_backend_zdnn_buffer_type_is_host,
        },
        /* .device  = */ &g_ggml_backend_zdnn_device,
        /* .context = */ NULL,
    };

    return &ggml_backend_buffer_type_zdnn;
}

static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
    return GGML_ZDNN_NAME "_Mapped";

    GGML_UNUSED(buft);
}

static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
    static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
        /* .iface = */ {
            /* .get_name       = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
            /* .alloc_buffer   = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
            /* .get_alignment  = */ ggml_backend_zdnn_buffer_type_get_alignment,
            /* .get_max_size   = */ NULL,
            /* .get_alloc_size = */ NULL,  // defaults to ggml_nbytes
            /* .is_host        = */ ggml_backend_zdnn_buffer_type_is_host,
        },
        /* .device  = */ &g_ggml_backend_zdnn_device,
        /* .context = */ NULL,
    };

    return &ggml_backend_buffer_from_ptr_type_zdnn;
}

//
// backend
//

static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
    return GGML_ZDNN_NAME;

    GGML_UNUSED(backend);
}

static void ggml_backend_zdnn_free(ggml_backend_t backend) {
    ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;

    ggml_zdnn_free(ctx);
    free(backend);
}

static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
    return ggml_zdnn_graph_compute(backend, cgraph);
}

static ggml_backend_i ggml_backend_zdnn_i = {
    /* .get_name           = */ ggml_backend_zdnn_name,
    /* .free               = */ ggml_backend_zdnn_free,
    /* .set_tensor_async   = */ NULL,
    /* .get_tensor_async   = */ NULL,
    /* .cpy_tensor_async   = */ NULL,
    /* .synchronize        = */ NULL,
    /* .graph_plan_create  = */ NULL,
    /* .graph_plan_free    = */ NULL,
    /* .graph_plan_update  = */ NULL,
    /* .graph_plan_compute = */ NULL,
    /* .graph_compute      = */ ggml_backend_zdnn_graph_compute,
    /* .event_record       = */ NULL,
    /* .event_wait         = */ NULL,
};

static ggml_guid_t ggml_backend_zdnn_guid(void) {
    static const char * guid_str = "IBM-ZDNN-ACCELER";
    return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}

// TODO: remove in the future
ggml_backend_t ggml_backend_zdnn_init(void) {
    ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);

    ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
    if (ctx == NULL) {
        GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
        return NULL;
    }

    ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend));
    *backend = (ggml_backend) {
        /* .guid       = */ ggml_backend_zdnn_guid(),
        /* .iface      = */ ggml_backend_zdnn_i,
        /* .device     = */ dev,
        /* .context    = */ ctx,
    };

    return backend;
}

bool ggml_backend_is_zdnn(ggml_backend_t backend) {
    return backend != NULL &&
           ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());

    GGML_UNUSED(backend);
}

//
// backend device
//

static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
    return GGML_ZDNN_NAME;

    GGML_UNUSED(dev);
}

static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
    return "IBM Z Neural Network Processing Assist (NNPA)";
}

static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
    *free  = 0;
    *total = 0;
}

static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
    return GGML_BACKEND_DEVICE_TYPE_ACCEL;

    GGML_UNUSED(dev);
}

static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
    props->name        = ggml_backend_zdnn_device_get_name(dev);
    props->description = ggml_backend_zdnn_device_get_description(dev);
    props->type        = ggml_backend_zdnn_device_get_type(dev);
    ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
    props->caps = (ggml_backend_dev_caps) {
        /* .async                = */ false,
        /* .host_buffer          = */ false,
        /* .buffer_from_host_ptr = */ true,
        /* .events               = */ false,
    };
}

static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
    ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
    if (ctx == NULL) {
        GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
        return NULL;
    }

    ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend));
    *backend = (ggml_backend) {
        /* .guid       = */ ggml_backend_zdnn_guid(),
        /* .iface      = */ ggml_backend_zdnn_i,
        /* .device     = */ dev,
        /* .context    = */ ctx,
    };

    return backend;

    GGML_UNUSED(params);
}

static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
    return ggml_backend_zdnn_buffer_type();

    GGML_UNUSED(dev);
}

static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
    ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();

    ctx->all_data  = ptr;
    ctx->all_size  = size;
    ctx->owned     = false;
    ctx->n_buffers = 0;

    const size_t size_page = sysconf(_SC_PAGESIZE);

    // page-align the data ptr
    {
        const uintptr_t offs = (uintptr_t) ptr % size_page;
        ptr  = (void *)((char *)ptr - offs);
        size += offs;
    }

    size_t size_aligned = size;
    if ((size_aligned % size_page) != 0) {
        size_aligned += size_page - (size_aligned % size_page);
    }

    ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;

    GGML_ASSERT(ctx_dev->zdnn_device >= 0);
    int device = ctx_dev->zdnn_device; GGML_UNUSED(device);

    std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
    zdnn_buffer->data = ptr;
    zdnn_buffer->size = size;
    ctx->buffers.push_back(std::move(zdnn_buffer));

    GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
                  __func__, size_aligned / 1024.0 / 1024.0);

    ++ctx->n_buffers;

    return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
}

static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
    ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context;

    return ggml_zdnn_supports_op(ctx_dev, op);
}

static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
    return
        buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
        buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;

    GGML_UNUSED(dev);
}

static ggml_backend_device_i ggml_backend_zdnn_device_i = {
    /* .get_name             = */ ggml_backend_zdnn_device_get_name,
    /* .get_description      = */ ggml_backend_zdnn_device_get_description,
    /* .get_memory           = */ ggml_backend_zdnn_device_get_memory,
    /* .get_type             = */ ggml_backend_zdnn_device_get_type,
    /* .get_props            = */ ggml_backend_zdnn_device_get_props,
    /* .init_backend         = */ ggml_backend_zdnn_device_init,
    /* .get_buffer_type      = */ ggml_backend_zdnn_device_get_buffer_type,
    /* .get_host_buffer_type = */ NULL,
    /* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
    /* .supports_op          = */ ggml_backend_zdnn_device_supports_op,
    /* .supports_buft        = */ ggml_backend_zdnn_device_supports_buft,
    /* .offload_op           = */ NULL,
    /* .event_new            = */ NULL,
    /* .event_free           = */ NULL,
    /* .event_synchronize    = */ NULL,
};

//
// backend registry
//

static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
    return GGML_ZDNN_NAME;

    GGML_UNUSED(reg);
}

static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
    if (!zdnn_is_nnpa_installed()) {
        return 0;
    }
    return 1;

    GGML_UNUSED(reg);
}

static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
    GGML_ASSERT(index == 0);

    return &g_ggml_backend_zdnn_device;

    GGML_UNUSED(reg);
    GGML_UNUSED(index);
}

static ggml_backend_feature g_ggml_backend_zdnn_features[] = {
    { "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" },
    { "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" },
    { "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" },
    { NULL, NULL },
};

static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
    return g_ggml_backend_zdnn_features;

    GGML_UNUSED(reg);
}

static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
    if (strcmp(name, "ggml_backend_get_features") == 0) {
        return (void *) ggml_backend_zdnn_get_features;
    }

    return NULL;

    GGML_UNUSED(reg);
}

static ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
    /* .get_name         = */ ggml_backend_zdnn_reg_get_name,
    /* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
    /* .get_device       = */ ggml_backend_zdnn_reg_device_get,
    /* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
};

static void ggml_zdnn_cleanup(void) {
    ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
}

// TODO: make thread-safe
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
    ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);

    // register cleanup callback
    atexit(ggml_zdnn_cleanup);

    {
        g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
            /* .api_version = */ GGML_ZDNN_VERSION,
            /* .iface       = */ ggml_backend_zdnn_reg_i,
            /* .context     = */ NULL,
        };

        g_ggml_backend_zdnn_device = (ggml_backend_device) {
            /* .iface       = */ ggml_backend_zdnn_device_i,
            /* .reg         = */ &g_ggml_backend_zdnn_reg,
            /* .context     = */ &g_ggml_ctx_dev_main,
        };

        return &g_ggml_backend_zdnn_reg;
    }
}

GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)