Spaces:
Running
Running
File size: 31,225 Bytes
6dd510c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
#include "zdnn.h"
#include "ggml-zdnn.h"
#include "ggml-zdnn-impl.h"
#include "ggml-impl.h"
#include "ggml-backend-impl.h"
#include <vector>
#include <memory>
#include <csignal>
#include <unistd.h>
inline zdnn_data_types ggml_zdnn_type_mapping(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return FP32;
case GGML_TYPE_F16:
return FP16;
case GGML_TYPE_BF16:
return BFLOAT;
case GGML_TYPE_I8:
return INT8;
case GGML_TYPE_I32:
return INT32;
case GGML_TYPE_Q8_0:
return INT8;
default:
GGML_ABORT("%s: fatal: unable to determine zTensor data type",
__func__);
break;
}
}
inline void ggml_zdnn_create_tensor(zdnn_tensor_desc & pre_tfm_desc,
zdnn_tensor_desc & tfm_desc,
zdnn_ztensor & ztensor,
const ggml_tensor * src,
const int64_t * ne,
const zdnn_data_layouts layout) {
zdnn_init_pre_transformed_desc(
layout,
ggml_zdnn_type_mapping(src->type),
&pre_tfm_desc,
ne[3], ne[2], ne[1], ne[0]
);
ZDNN_CHECK(zdnn_generate_transformed_desc(&pre_tfm_desc, &tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&pre_tfm_desc, &tfm_desc, &ztensor));
}
inline void ggml_zdnn_load_tensor(zdnn_ztensor & ztensor,
void * buffer) {
ZDNN_CHECK(zdnn_transform_ztensor(&ztensor, buffer));
}
inline void ggml_zdnn_init_tensor(ggml_backend_zdnn_buffer * buffer, const ggml_tensor * tensor) {
switch (tensor->op) {
case GGML_OP_MUL_MAT:
{
zdnn_init_pre_transformed_desc(
ZDNN_2D,
ggml_zdnn_type_mapping(tensor->type),
&buffer->pre_tfm_desc,
tensor->ne[1], tensor->ne[0]
);
} break;
default:
{
// For 4D tensors, GGML uses NCHW layout. However, because zDNN
// automatically transforms everything to NHWC, we will use it
// directly to avoid the performance penalty changing the
// layout and reshaping the tensor.
zdnn_init_pre_transformed_desc(
ZDNN_NHWC,
ggml_zdnn_type_mapping(tensor->type),
&buffer->pre_tfm_desc,
tensor->ne[3], tensor->ne[2], tensor->ne[1], tensor->ne[0]
);
// TODO: Consider adding a ggml check.
// TODO: If tensor = 4D, use ZDNN_NCHW by default.
// TODO: If tensor = 2D, use ZDNN_NHWC by default.
} break;
}
ZDNN_CHECK(zdnn_generate_transformed_desc(&buffer->pre_tfm_desc, &buffer->tfm_desc));
ZDNN_CHECK(zdnn_init_ztensor_with_malloc(&buffer->pre_tfm_desc, &buffer->tfm_desc, &buffer->ztensor));
}
static void ggml_zdnn_mul_mat_op(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_TENSOR_BINARY_OP_LOCALS;
const enum ggml_type type = src0->type;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
const ggml_tensor * weights = src0;
const ggml_tensor * inputs = src1;
ggml_tensor * output = dst;
ggml_backend_zdnn_buffer * weights_extra = (ggml_backend_zdnn_buffer *)weights->extra;
ggml_backend_zdnn_buffer * inputs_extra = (ggml_backend_zdnn_buffer *)inputs->extra;
ggml_backend_zdnn_buffer * output_extra = (ggml_backend_zdnn_buffer *)output->extra;
zdnn_tensor_desc ptd_bias, td_bias;
zdnn_ztensor zt_bias;
const int64_t weights_rows = ne01;
const int64_t weights_cols = ne00;
const int64_t inputs_rows = ne11;
const int64_t inputs_cols = ne10;
assert(inputs_cols == weights_cols);
const int64_t output_rows = ne1;
const int64_t output_cols = ne0;
const int64_t bias_dim [GGML_MAX_DIMS] = { 1, 1, 1, output_cols };
ggml_zdnn_create_tensor(ptd_bias, td_bias, zt_bias, output, bias_dim, ZDNN_1D);
void * bias_data = (void *)calloc(ne0, ggml_element_size(output));
if (weights_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(weights_extra->ztensor, weights->data);
if (inputs_extra->ztensor.is_transformed == false) ggml_zdnn_load_tensor(inputs_extra->ztensor, inputs->data);
ggml_zdnn_load_tensor(zt_bias, bias_data);
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
// __func__, weights_extra->name,
// weights->ne[3], weights->ne[2], weights->ne[1], weights->ne[0],
// weights_extra->pre_tfm_desc.dim1,
// weights_extra->pre_tfm_desc.dim2,
// weights_extra->pre_tfm_desc.dim3,
// weights_extra->pre_tfm_desc.dim4);
// GGML_LOG_INFO("%s: tensor '%s' tensor dimensions: [%ld, %ld, %ld, %ld] pre_tfm_desc dimensions: [%ld, %ld, %ld, %ld]\n",
// __func__, inputs_extra->name,
// inputs->ne[3], inputs->ne[2], inputs->ne[1], inputs->ne[0],
// inputs_extra->pre_tfm_desc.dim1,
// inputs_extra->pre_tfm_desc.dim2,
// inputs_extra->pre_tfm_desc.dim3,
// inputs_extra->pre_tfm_desc.dim4);
GGML_ASSERT(weights_extra->pre_tfm_desc.dim1 == weights->ne[0] && "weights_extra->pre_tfm_desc.dim1 must match weights->ne[0]");
GGML_ASSERT(weights_extra->pre_tfm_desc.dim2 == weights->ne[1] && "weights_extra->pre_tfm_desc.dim2 must match weights->ne[1]");
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim1 == inputs->ne[0] && "inputs_extra->pre_tfm_desc.dim1 must match inputs->ne[0]");
GGML_ASSERT(inputs_extra->pre_tfm_desc.dim2 == inputs->ne[1] && "inputs_extra->pre_tfm_desc.dim2 must match inputs->ne[1]");
ZDNN_CHECK(zdnn_matmul_transpose_op(&inputs_extra->ztensor, &weights_extra->ztensor, &zt_bias,
false, true, MATMUL_OP_ADDITION, &output_extra->ztensor));
// TODO: Remove in the future as we are currently DLF16 -> FP32 then in the next op, FP32 -> DLF16 again. Inefficient.
ZDNN_CHECK(zdnn_transform_origtensor(&output_extra->ztensor, output->data));
ZDNN_CHECK(zdnn_free_ztensor_buffer(&zt_bias));
free(bias_data);
}
static void ggml_zdnn_mul_mat_dispatch(ggml_backend_zdnn_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
bool use_mul_mat_vec =
(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool use_mul_mat_q =
ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// debug helpers
// GGML_LOG_INFO("%s: use_mul_mat_vec = %d\n", __func__, use_mul_mat_vec);
// GGML_LOG_INFO("%s: use_mul_mat_vec_q = %d\n", __func__, use_mul_mat_vec_q);
// GGML_LOG_INFO("%s: use_mul_mat_q = %d\n", __func__, use_mul_mat_q);
// GGML_LOG_INFO("%s: src0: %8d %8d %8d %8d\n", __func__, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
// GGML_LOG_INFO("%s: src1: %8d %8d %8d %8d\n", __func__, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
// GGML_LOG_INFO("%s: %8d %8d %8d %8d\n", __func__, src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
// GGML_LOG_INFO("%s: src0 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
// GGML_LOG_INFO("%s: src1 is contiguous %d, transposed %d, type = %s, name = %s\n", __func__, ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1)
&& src1->ne[2] * src1->ne[3] > 1) {
// general KQ + KQV multi-batch
GGML_LOG_INFO("%s: using zdnn_mul_mat_batched for KQ + KQV multi-batch\n", __func__);
// ggml_zdnn_mul_mat_batched(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec for vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_vec_q for quantized vector multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_vec_q, ggml_zdnn_quantize_row_q8_1);
} else if (use_mul_mat_q) {
GGML_LOG_INFO("%s: using zdnn_op_mul_mat_q for quantized matrix multiplication\n", __func__);
// ggml_zdnn_op_mul_mat(ctx, src0, src1, dst, ggml_zdnn_op_mul_mat_q, ggml_zdnn_quantize_mmq_q8_1);
} else {
// GGML_LOG_INFO("%s: using zdnn_op_mul_mat for general matrix multiplication\n", __func__);
ggml_zdnn_mul_mat_op(ctx, src0, src1, dst);
}
}
static bool ggml_zdnn_compute_forward(ggml_backend_zdnn_context * ctx, ggml_tensor * dst) {
switch (dst->op) {
case GGML_OP_MUL_MAT:
ggml_zdnn_mul_mat_dispatch(ctx, dst->src[0], dst->src[1], dst);
break;
default:
return false;
}
return true;
}
static enum ggml_status ggml_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * gf) {
ggml_backend_zdnn_context * ctx = ( ggml_backend_zdnn_context *)backend->context;
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)backend->device->context;
ctx->gf = gf;
for (int i = 0; i < gf->n_nodes; i++) {
ggml_tensor * node = gf->nodes[i];
if (ggml_is_empty(node)
|| node->op == GGML_OP_NONE
|| node->op == GGML_OP_RESHAPE
|| node->op == GGML_OP_VIEW
|| node->op == GGML_OP_PERMUTE
|| node->op == GGML_OP_TRANSPOSE) {
continue;
}
bool ok = ggml_zdnn_compute_forward(ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: unsupported op %s (%s)\n",
__func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
}
static bool ggml_zdnn_supports_op(const ggml_backend_zdnn_device_context * ctx_dev, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
return true;
case GGML_OP_MUL_MAT:
{
const ggml_tensor * src0 = op->src[0];
const ggml_tensor * src1 = op->src[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = op->ne[0];
const int64_t ne1 = op->ne[1];
const int64_t max_batch = ctx_dev->max_size;
return ggml_is_matrix(src0) &&
ggml_is_matrix(src1) &&
ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
src0->view_src == nullptr && src1->view_src == nullptr &&
src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
(ne0 <= max_batch && ne1 <= max_batch && ne10 <= max_batch);
} break;
default:
return false;
}
}
////////////////////////////////////////////////////////////////////////////////
//
// globals
//
// initialised in ggml_backend_zdnn_reg
static ggml_backend_reg g_ggml_backend_zdnn_reg;
static ggml_backend_device g_ggml_backend_zdnn_device;
static ggml_backend_zdnn_device_context g_ggml_ctx_dev_main = {
/* .zdnn_device = */ 0,
/* .zdnn_device_ref_count = */ 0,
/* .has_parmblkformat_0 = */ false,
/* .has_parmblkformat_1 = */ false,
/* .max_size = */ 0,
/* .name = */ "",
};
static int ggml_backend_zdnn_device_acq(ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
if (ctx->zdnn_device == 0) {
ctx->zdnn_device = 1;
}
if (ctx->zdnn_device >= 1) {
ctx->has_parmblkformat_0 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0);
ctx->has_parmblkformat_1 = zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1);
ctx->max_size = zdnn_get_nnpa_max_dim_idx_size();
strncpy(ctx->name, GGML_ZDNN_NAME, sizeof(ctx->name) - 1);
}
ctx->zdnn_device_ref_count++;
return ctx->zdnn_device;
}
static void ggml_backend_zdnn_device_rel(ggml_backend_zdnn_device_context * ctx) {
assert(ctx != NULL);
assert(ctx->zdnn_device_ref_count > 0);
ctx->zdnn_device_ref_count--;
if (ctx->zdnn_device_ref_count == 0) {
if (ctx->zdnn_device >= 0) {
ctx->zdnn_device = 0;
}
}
}
static ggml_backend_zdnn_context * ggml_zdnn_init(ggml_backend_dev_t dev) {
GGML_LOG_INFO("%s: allocating\n", __func__);
GGML_LOG_INFO("%s: found 1 device\n", __func__);
#ifdef STATIC_LIB
zdnn_init();
#endif
ggml_backend_zdnn_context * ctx = new ggml_backend_zdnn_context();
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
int device = 1;
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, ctx_dev->name);
ctx->device = device;
GGML_LOG_INFO("%s: NNPA name: %s\n", __func__, ctx_dev->name);
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_0 = %s\n", __func__, ctx_dev->has_parmblkformat_0 ? "true" : "false");
GGML_LOG_INFO("%s: NNPA_PARMBLKFORMAT_1 = %s\n", __func__, ctx_dev->has_parmblkformat_1 ? "true" : "false");
ctx->gf = nullptr;
return ctx;
}
static void ggml_zdnn_free(ggml_backend_zdnn_context * ctx) {
GGML_LOG_INFO("%s: deallocating\n", __func__);
delete ctx;
}
//
// backend interface
//
static void ggml_backend_zdnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
if (ctx->buffers[i]->ztensor.buffer != NULL && ctx->buffers[i]->ztensor.is_transformed) {
ZDNN_CHECK(zdnn_free_ztensor_buffer(&ctx->buffers[i]->ztensor));
}
}
delete ctx;
}
static void * ggml_backend_zdnn_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
return ctx->all_data;
}
static enum ggml_status ggml_backend_zdnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return GGML_STATUS_SUCCESS;
}
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
const int64_t tsize = ggml_nbytes(tensor);
int buffer_idx = ctx->n_buffers;
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = tensor->data;
zdnn_buffer->size = tsize;
strncpy(zdnn_buffer->name, tensor->name, GGML_MAX_NAME - 1);
ggml_zdnn_init_tensor(zdnn_buffer.get(), tensor);
tensor->extra = zdnn_buffer.get();
ctx->buffers.push_back(std::move(zdnn_buffer));
ctx->n_buffers++;
// GGML_LOG_INFO("%s: initialised tensor '%s' in buffer %d, size = %8.2f MiB\n",
// __func__, tensor->name, buffer_idx, tsize);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_zdnn_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
memset((char *)tensor->data + offset, value, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
static void ggml_backend_zdnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_zdnn_buffer_context * ctx = (ggml_backend_zdnn_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
/* .free_buffer = */ ggml_backend_zdnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_zdnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_zdnn_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
};
//
// default buffer type
//
static const char * ggml_backend_zdnn_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME;
GGML_UNUSED(buft);
}
static ggml_backend_buffer_t ggml_backend_zdnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)buft->device->context;
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
ctx->all_data = ggml_aligned_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
if (ctx->all_data != NULL) {
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = ctx->all_data;
zdnn_buffer->size = size_aligned;
ctx->buffers.push_back(std::move(zdnn_buffer));
}
if (size_aligned > 0 && (ctx->all_data == NULL)) {
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f\n",
__func__, size_aligned / 1024.0 / 1024.0);
delete ctx;
return NULL;
}
return ggml_backend_buffer_init(buft, ggml_backend_zdnn_buffer_i, ctx, size);
}
static size_t ggml_backend_zdnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 256;
GGML_UNUSED(buft);
}
static bool ggml_backend_zdnn_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void) {
static ggml_backend_buffer_type ggml_backend_buffer_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_type_zdnn;
}
static const char * ggml_backend_zdnn_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_ZDNN_NAME "_Mapped";
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_from_ptr_type(void) {
static ggml_backend_buffer_type ggml_backend_buffer_from_ptr_type_zdnn = {
/* .iface = */ {
/* .get_name = */ ggml_backend_zdnn_buffer_from_ptr_type_get_name,
/* .alloc_buffer = */ ggml_backend_zdnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_zdnn_buffer_type_get_alignment,
/* .get_max_size = */ NULL,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_zdnn_buffer_type_is_host,
},
/* .device = */ &g_ggml_backend_zdnn_device,
/* .context = */ NULL,
};
return &ggml_backend_buffer_from_ptr_type_zdnn;
}
//
// backend
//
static const char * ggml_backend_zdnn_name(ggml_backend_t backend) {
return GGML_ZDNN_NAME;
GGML_UNUSED(backend);
}
static void ggml_backend_zdnn_free(ggml_backend_t backend) {
ggml_backend_zdnn_context * ctx = (ggml_backend_zdnn_context *)backend->context;
ggml_zdnn_free(ctx);
free(backend);
}
static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
return ggml_zdnn_graph_compute(backend, cgraph);
}
static ggml_backend_i ggml_backend_zdnn_i = {
/* .get_name = */ ggml_backend_zdnn_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_zdnn_guid(void) {
static const char * guid_str = "IBM-ZDNN-ACCELER";
return reinterpret_cast<ggml_guid_t>((void *)guid_str);
}
// TODO: remove in the future
ggml_backend_t ggml_backend_zdnn_init(void) {
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_zdnn_reg(), 0);
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend_t)malloc(sizeof(ggml_backend));
*backend = (ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
}
bool ggml_backend_is_zdnn(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_zdnn_guid());
GGML_UNUSED(backend);
}
//
// backend device
//
static const char * ggml_backend_zdnn_device_get_name(ggml_backend_dev_t dev) {
return GGML_ZDNN_NAME;
GGML_UNUSED(dev);
}
static const char * ggml_backend_zdnn_device_get_description(ggml_backend_dev_t dev) {
return "IBM Z Neural Network Processing Assist (NNPA)";
}
static void ggml_backend_zdnn_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
*free = 0;
*total = 0;
}
static enum ggml_backend_dev_type ggml_backend_zdnn_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
static void ggml_backend_zdnn_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_zdnn_device_get_name(dev);
props->description = ggml_backend_zdnn_device_get_description(dev);
props->type = ggml_backend_zdnn_device_get_type(dev);
ggml_backend_zdnn_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = (ggml_backend_dev_caps) {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_zdnn_device_init(ggml_backend_dev_t dev, const char * params) {
ggml_backend_zdnn_context * ctx = ggml_zdnn_init(dev);
if (ctx == NULL) {
GGML_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return NULL;
}
ggml_backend_t backend = (ggml_backend *)malloc(sizeof(ggml_backend));
*backend = (ggml_backend) {
/* .guid = */ ggml_backend_zdnn_guid(),
/* .iface = */ ggml_backend_zdnn_i,
/* .device = */ dev,
/* .context = */ ctx,
};
return backend;
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_zdnn_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_zdnn_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_zdnn_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
ggml_backend_zdnn_buffer_context * ctx = new ggml_backend_zdnn_buffer_context();
ctx->all_data = ptr;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
// page-align the data ptr
{
const uintptr_t offs = (uintptr_t) ptr % size_page;
ptr = (void *)((char *)ptr - offs);
size += offs;
}
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += size_page - (size_aligned % size_page);
}
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *)dev->context;
GGML_ASSERT(ctx_dev->zdnn_device >= 0);
int device = ctx_dev->zdnn_device; GGML_UNUSED(device);
std::unique_ptr<ggml_backend_zdnn_buffer> zdnn_buffer = std::make_unique<ggml_backend_zdnn_buffer>();
zdnn_buffer->data = ptr;
zdnn_buffer->size = size;
ctx->buffers.push_back(std::move(zdnn_buffer));
GGML_LOG_INFO("%s: allocated buffer, size = %8.2f MiB\n",
__func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
return ggml_backend_buffer_init(ggml_backend_zdnn_buffer_from_ptr_type(), ggml_backend_zdnn_buffer_i, ctx, size);
}
static bool ggml_backend_zdnn_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_zdnn_device_context * ctx_dev = (ggml_backend_zdnn_device_context *) dev->context;
return ggml_zdnn_supports_op(ctx_dev, op);
}
static bool ggml_backend_zdnn_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return
buft->iface.get_name == ggml_backend_zdnn_buffer_type_get_name ||
buft->iface.get_name == ggml_backend_zdnn_buffer_from_ptr_type_get_name;
GGML_UNUSED(dev);
}
static ggml_backend_device_i ggml_backend_zdnn_device_i = {
/* .get_name = */ ggml_backend_zdnn_device_get_name,
/* .get_description = */ ggml_backend_zdnn_device_get_description,
/* .get_memory = */ ggml_backend_zdnn_device_get_memory,
/* .get_type = */ ggml_backend_zdnn_device_get_type,
/* .get_props = */ ggml_backend_zdnn_device_get_props,
/* .init_backend = */ ggml_backend_zdnn_device_init,
/* .get_buffer_type = */ ggml_backend_zdnn_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_zdnn_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_zdnn_device_supports_op,
/* .supports_buft = */ ggml_backend_zdnn_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
//
// backend registry
//
static const char * ggml_backend_zdnn_reg_get_name(ggml_backend_reg_t reg) {
return GGML_ZDNN_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_zdnn_reg_device_count(ggml_backend_reg_t reg) {
if (!zdnn_is_nnpa_installed()) {
return 0;
}
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_zdnn_reg_device_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
return &g_ggml_backend_zdnn_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
}
static ggml_backend_feature g_ggml_backend_zdnn_features[] = {
{ "NNPA", zdnn_is_nnpa_installed() ? "1" : "0" },
{ "NNPA_PARMBLKFORMAT_0", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_0) ? "1" : "0" },
{ "NNPA_PARMBLKFORMAT_1", zdnn_is_nnpa_parmblk_fmt_installed(1, NNPA_PARMBLKFORMAT_1) ? "1" : "0" },
{ NULL, NULL },
};
static ggml_backend_feature * ggml_backend_zdnn_get_features(ggml_backend_reg_t reg) {
return g_ggml_backend_zdnn_features;
GGML_UNUSED(reg);
}
static void * ggml_backend_zdnn_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_get_features") == 0) {
return (void *) ggml_backend_zdnn_get_features;
}
return NULL;
GGML_UNUSED(reg);
}
static ggml_backend_reg_i ggml_backend_zdnn_reg_i = {
/* .get_name = */ ggml_backend_zdnn_reg_get_name,
/* .get_device_count = */ ggml_backend_zdnn_reg_device_count,
/* .get_device = */ ggml_backend_zdnn_reg_device_get,
/* .get_proc_address = */ ggml_backend_zdnn_get_proc_address,
};
static void ggml_zdnn_cleanup(void) {
ggml_backend_zdnn_device_rel(&g_ggml_ctx_dev_main);
}
// TODO: make thread-safe
ggml_backend_reg_t ggml_backend_zdnn_reg(void) {
ggml_backend_zdnn_device_acq(&g_ggml_ctx_dev_main);
// register cleanup callback
atexit(ggml_zdnn_cleanup);
{
g_ggml_backend_zdnn_reg = (ggml_backend_reg) {
/* .api_version = */ GGML_ZDNN_VERSION,
/* .iface = */ ggml_backend_zdnn_reg_i,
/* .context = */ NULL,
};
g_ggml_backend_zdnn_device = (ggml_backend_device) {
/* .iface = */ ggml_backend_zdnn_device_i,
/* .reg = */ &g_ggml_backend_zdnn_reg,
/* .context = */ &g_ggml_ctx_dev_main,
};
return &g_ggml_backend_zdnn_reg;
}
}
GGML_BACKEND_DL_IMPL(ggml_backend_zdnn_reg)
|