SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| relevant |
- 'Nuevo caso de phishing relacionado con Abanca, registrado el 23 de julio de 2024, con la URL: /www.inicio-abanca.com/es/WELE200M_Logon_Ini.aspx.'
- 'Una alumna que trabajó en Bancomer reveló un esquema de robo en el que dos cajeros afirmaban que un cliente había depositado mil pesos en un pago de dos mil y se quedaban con la mitad cada uno.'
- 'Las previsiones de crecimiento de España para 2024 han mejorado según diversas organizaciones, con estimaciones que oscilan entre el 1,8% y el 2,4%, impulsadas por turismo, exportaciones y trabajadores extranjeros.'
|
| discard |
- 'Banco Santander ofrece una cuenta en línea sin comisiones y un bono de 400€ por domiciliar tu nómina.'
- 'El BBVA fue el banco que peor me trató al tener que contratar productos innecesarios para conseguir mi primera hipoteca de funcionario.'
- 'CaixaBank se destaca como líder del sector bancario gracias a su sólido crecimiento y eficiencia operativa, convirtiéndose en una opción atractiva para inversores.'
|
Evaluation
Metrics
| Label |
Accuracy |
| all |
0.7739 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-200")
preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
21.3275 |
41 |
| Label |
Training Sample Count |
| discard |
200 |
| relevant |
200 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0002 |
1 |
0.4199 |
- |
| 0.0100 |
50 |
0.3357 |
- |
| 0.0199 |
100 |
0.3198 |
- |
| 0.0299 |
150 |
0.2394 |
- |
| 0.0398 |
200 |
0.2411 |
- |
| 0.0498 |
250 |
0.2277 |
- |
| 0.0597 |
300 |
0.1876 |
- |
| 0.0697 |
350 |
0.1481 |
- |
| 0.0796 |
400 |
0.1533 |
- |
| 0.0896 |
450 |
0.0145 |
- |
| 0.0995 |
500 |
0.0113 |
- |
| 0.1095 |
550 |
0.0045 |
- |
| 0.1194 |
600 |
0.0201 |
- |
| 0.1294 |
650 |
0.0008 |
- |
| 0.1393 |
700 |
0.0003 |
- |
| 0.1493 |
750 |
0.0003 |
- |
| 0.1592 |
800 |
0.0003 |
- |
| 0.1692 |
850 |
0.0001 |
- |
| 0.1791 |
900 |
0.0001 |
- |
| 0.1891 |
950 |
0.0001 |
- |
| 0.1990 |
1000 |
0.0001 |
- |
| 0.2090 |
1050 |
0.0001 |
- |
| 0.2189 |
1100 |
0.0002 |
- |
| 0.2289 |
1150 |
0.0001 |
- |
| 0.2388 |
1200 |
0.0001 |
- |
| 0.2488 |
1250 |
0.0001 |
- |
| 0.2587 |
1300 |
0.0 |
- |
| 0.2687 |
1350 |
0.0001 |
- |
| 0.2786 |
1400 |
0.0001 |
- |
| 0.2886 |
1450 |
0.0001 |
- |
| 0.2985 |
1500 |
0.0 |
- |
| 0.3085 |
1550 |
0.0001 |
- |
| 0.3184 |
1600 |
0.0 |
- |
| 0.3284 |
1650 |
0.0 |
- |
| 0.3383 |
1700 |
0.0 |
- |
| 0.3483 |
1750 |
0.0001 |
- |
| 0.3582 |
1800 |
0.0 |
- |
| 0.3682 |
1850 |
0.0 |
- |
| 0.3781 |
1900 |
0.0 |
- |
| 0.3881 |
1950 |
0.0 |
- |
| 0.3980 |
2000 |
0.0 |
- |
| 0.4080 |
2050 |
0.0 |
- |
| 0.4179 |
2100 |
0.0 |
- |
| 0.4279 |
2150 |
0.0 |
- |
| 0.4378 |
2200 |
0.0 |
- |
| 0.4478 |
2250 |
0.0 |
- |
| 0.4577 |
2300 |
0.0 |
- |
| 0.4677 |
2350 |
0.0 |
- |
| 0.4776 |
2400 |
0.0 |
- |
| 0.4876 |
2450 |
0.0 |
- |
| 0.4975 |
2500 |
0.0 |
- |
| 0.5075 |
2550 |
0.0 |
- |
| 0.5174 |
2600 |
0.0 |
- |
| 0.5274 |
2650 |
0.0 |
- |
| 0.5373 |
2700 |
0.0 |
- |
| 0.5473 |
2750 |
0.0 |
- |
| 0.5572 |
2800 |
0.0 |
- |
| 0.5672 |
2850 |
0.0 |
- |
| 0.5771 |
2900 |
0.0 |
- |
| 0.5871 |
2950 |
0.0 |
- |
| 0.5970 |
3000 |
0.0 |
- |
| 0.6070 |
3050 |
0.0 |
- |
| 0.6169 |
3100 |
0.0 |
- |
| 0.6269 |
3150 |
0.0 |
- |
| 0.6368 |
3200 |
0.0 |
- |
| 0.6468 |
3250 |
0.0 |
- |
| 0.6567 |
3300 |
0.0 |
- |
| 0.6667 |
3350 |
0.0 |
- |
| 0.6766 |
3400 |
0.0 |
- |
| 0.6866 |
3450 |
0.0 |
- |
| 0.6965 |
3500 |
0.0 |
- |
| 0.7065 |
3550 |
0.0 |
- |
| 0.7164 |
3600 |
0.0 |
- |
| 0.7264 |
3650 |
0.0 |
- |
| 0.7363 |
3700 |
0.0 |
- |
| 0.7463 |
3750 |
0.0 |
- |
| 0.7562 |
3800 |
0.0 |
- |
| 0.7662 |
3850 |
0.0 |
- |
| 0.7761 |
3900 |
0.0 |
- |
| 0.7861 |
3950 |
0.0 |
- |
| 0.7960 |
4000 |
0.0 |
- |
| 0.8060 |
4050 |
0.0 |
- |
| 0.8159 |
4100 |
0.0 |
- |
| 0.8259 |
4150 |
0.0 |
- |
| 0.8358 |
4200 |
0.0 |
- |
| 0.8458 |
4250 |
0.0 |
- |
| 0.8557 |
4300 |
0.0 |
- |
| 0.8657 |
4350 |
0.0 |
- |
| 0.8756 |
4400 |
0.0 |
- |
| 0.8856 |
4450 |
0.0 |
- |
| 0.8955 |
4500 |
0.0 |
- |
| 0.9055 |
4550 |
0.0 |
- |
| 0.9154 |
4600 |
0.0 |
- |
| 0.9254 |
4650 |
0.0 |
- |
| 0.9353 |
4700 |
0.0 |
- |
| 0.9453 |
4750 |
0.0 |
- |
| 0.9552 |
4800 |
0.0 |
- |
| 0.9652 |
4850 |
0.0 |
- |
| 0.9751 |
4900 |
0.0 |
- |
| 0.9851 |
4950 |
0.0 |
- |
| 0.9950 |
5000 |
0.0 |
- |
Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}