RDT2-VQ / README.md
robotics-diffusion-transformer's picture
Update README.md
7957a57 verified
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
pipeline_tag: robotics
library_name: transformers
tags:
- RDT
- rdt
- RDT 2
- Vision-Language-Action
- Bimanual
- Manipulation
- Zero-shot
- UMI
---
# RDT2-VQ: Vision-Language-Action with Residual VQ Action Tokens
**RDT2-VQ** is an autoregressive Vision-Language-Action (VLA) model adapted from **[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** and trained on large-scale **UMI** bimanual manipulation data.
It predicts a short-horizon **relative action chunk** (24 steps, 20 dims/step) from binocular wrist-camera RGB and a natural-language instruction.
Actions are discretized with a lightweight **Residual VQ (RVQ)** tokenizer, enabling robust zero-shot transfer across **unseen embodiments** for simple, open-vocabulary skills (e.g., pick, place, shake, wipe).
[**Home**](https://rdt-robotics.github.io/rdt2/) - [**Github**](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file) - [**Discord**](https://discord.gg/vsZS3zmf9A)
---
## Table of contents
* [Highlights](#highlights)
* [Model details](#model-details)
* [Hardware & software requirements](#hardware--software-requirements)
* [Quickstart (inference)](#quickstart-inference)
* [Precision settings](#precision-settings)
* [Intended uses & limitations](#intended-uses--limitations)
* [Troubleshooting](#troubleshooting)
* [Changelog](#changelog)
* [Citation](#citation)
* [Contact](#contact)
---
## Highlights
* **Zero-shot cross-embodiment**: Demonstrated on Bimanual **UR5e** and **Franka Research 3** setups; designed to generalize further with correct hardware calibration.
* **UMI scale**: Trained on **10k+ hours** from **100+ indoor scenes** of human manipulation with the UMI gripper.
* **Residual VQ action tokenizer**: Compact, stable action codes; open-vocabulary instruction following via Qwen2.5-VL-7B backbone.
---
## Model details
### Architecture
* **Backbone**: Qwen2.5-VL-7B-Instruct (vision-language).
* **Observation**: Two wrist-camera RGB images (right/left), 384×384, JPEG-like statistics.
* **Instruction**: Short imperative text, recommended format **“Verb + Object.”** (e.g., “Pick up the apple.”).
### Action representation (UMI bimanual, per 24-step chunk)
* 20-D per step = right (10) + left (10):
* pos (x,y,z): 3
* rot (6D rotation): 6
* gripper width: 1
* Output tensor shape: **(T=24, D=20)**, relative deltas, `float32`.
* The RVQ tokenizer yields a fixed-length token sequence; see tokenizer card for exact code lengths.
### Tokenizer
* **Tokenizer repo**: [`robotics-diffusion-transformer/RVQActionTokenizer`](https://huggingface.co/robotics-diffusion-transformer/RVQActionTokenizer)
* Use **float32** for the VQ model.
* Provide a **[LinearNormalizer](http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt)** for action scaling (UMI convention).
---
## Hardware & software requirements
Approximate **single-GPU** requirements (Qwen2.5-VL-7B-Instruct scale):
| Mode | RAM | VRAM | Example GPU |
| --------- | ------: | ------: | ----------------------- |
| Inference | ≥ 32 GB | ≥ 16 GB | RTX 4090 |
| LoRA FT | – | ≥ 32 GB | A100 40GB |
| Full FT | – | ≥ 80 GB | A100 80GB / H100 / B200 |
> For **deployment on real robots**, follow your platform’s **end-effector + camera** choices and perform **hardware setup & calibration** (camera stand/pose, flange, etc.) before running closed-loop policies.
**Tested OS**: Ubuntu 24.04.
---
## Quickstart (inference)
```python
# Run under repository: https://github.com/thu-ml/RDT2
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from vqvae import MultiVQVAE
from models.normalizer import LinearNormalizer
from utils import batch_predict_action
# assuming using gpu 0
device = "cuda:0"
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"robotics-diffusion-transformer/RDT2-VQ"
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map=device
).eval()
vae = MultiVQVAE.from_pretrained("robotics-diffusion-transformer/RVQActionTokenizer").eval()
vae = vae.to(device=device, dtype=torch.float32)
valid_action_id_length = (
vae.pos_id_len + vae.rot_id_len + vae.grip_id_len
)
# TODO: modify to your own downloaded normalizer path
# download from http://ml.cs.tsinghua.edu.cn/~lingxuan/rdt2/umi_normalizer_wo_downsample_indentity_rot.pt
normalizer = LinearNormalizer.from_pretrained("umi_normalizer_wo_downsample_indentity_rot.pt") #
result = batch_predict_action(
model,
processor,
vae,
normalizer,
examples=[
{
"obs": {
# NOTE: following the setting of UMI, camera0_rgb for right arm, camera1_rgb for left arm
"camera0_rgb": ..., # RGB image in np.ndarray of shape (1, 384, 384, 3) with dtype=np.uint8
"camera1_rgb": ..., # RGB image in np.ndarray of shape (1, 384, 384, 3) with dtype=np.uint8
},
"meta": {
"num_camera": 2
}
},
..., # we support batch inference, so you can pass a list of examples
],
valid_action_id_length=valid_action_id_length,
apply_jpeg_compression=True,
# Since model is trained with mostly jpeg images, we suggest toggle this on for better formance
instruction="Pick up the apple."
# We suggest using Instruction in format "verb + object" with Capitalized First Letter and trailing period
)
# get the predict action from example 0
action_chunk = result["action_pred"][0] # torch.FloatTensor of shape (24, 20) with dtype=torch.float32
# action_chunk (T, D) with T=24, D=20
# T=24: our action_chunk predicts the future 0.8s in fps=30, i.e. 24 frames
# D=20: following the setting of UMI, we predict the action for both arms from right to left
# - [0-2]: RIGHT ARM end effector position in x, y, z (unit: m)
# - [3-8]: RIGHT ARM end effector rotation in 6D rotation representation
# - [9]: RIGHT ARM gripper width (unit: m)
# - [10-12]: LEFT ARM end effector position in x, y, z (unit: m)
# - [13-18]: LEFT ARM end effector rotation in 6D rotation representation
# - [19]: LEFT ARM gripper width (unit: m)
# rescale gripper width from [0, 0.088] to [0, 0.1]
for robot_idx in range(2):
action_chunk[:, robot_idx * 10 + 9] = action_chunk[:, robot_idx * 10 + 9] / 0.088 * 0.1
```
> For **installation and fine-tuning instructions**, please refer to the official [GitHub repository](https://github.com/thu-ml/RDT2).
---
## Intended uses & limitations
**Intended uses**
* Research in **robot manipulation** and **VLA modeling**.
* Zero-shot or few-shot deployment on bimanual systems following the repo’s **[hardware calibration](https://github.com/thu-ml/RDT2/tree/main?tab=readme-ov-file#1-important-hard-ware-set-up-and-calibration)** steps.
**Limitations**
* Open-world robustness depends on **calibration quality**, camera placement, and gripper specifics.
* Requires correct **normalization** and **RVQ code compatibility**.
* Safety-critical deployment requires **supervision**, interlocks, and conservative velocity/force limits.
**Safety & responsible use**
* Always test in simulation or with **hardware limits** engaged (reduced speed, gravity compensation, E-stop within reach).
---
## Troubleshooting
| Symptom | Likely cause | Suggested fix |
| ---------------------------------- | -------------- | ------------------------------------------------------------------- |
| Drifting / unstable gripper widths | Scale mismatch | Apply **LinearNormalizer**; rescale widths (\[0,0.088] → \[0,0.1]). |
| Poor instruction following | Prompt format | Use “**Verb + Object.**” with capitalization + period. |
| No improvement after FT | OOD actions | Check RVQ bounds & reconstruction error; verify normalization. |
| Vision brittleness | JPEG gap | Enable `--image_corruption`; ensure 384×384 inputs. |
---
## Changelog
* **2025-09**: Initial release of **RDT2-VQ** on Hugging Face.
---
## Citation
```bibtex
@software{rdt2,
title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data},
author={RDT Team},
url={https://github.com/thu-ml/RDT2},
month={September},
year={2025}
}
```
---
## Contact
* Project page: [https://rdt-robotics.github.io/rdt2/](https://rdt-robotics.github.io/rdt2/)
* Organization: [https://huggingface.co/robotics-diffusion-transformer](https://huggingface.co/robotics-diffusion-transformer)
* Discord: [https://discord.gg/vsZS3zmf9A](https://discord.gg/vsZS3zmf9A)