bert-sst2
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4524
- Accuracy: 0.8
- F1: 0.8
- Precision: 0.8
- Recall: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 13 | 0.8062 | 0.48 | 0.3114 | 0.2304 | 0.48 |
| No log | 2.0 | 26 | 0.7773 | 0.48 | 0.3114 | 0.2304 | 0.48 |
| No log | 3.0 | 39 | 0.7244 | 0.49 | 0.3331 | 0.7527 | 0.49 |
| No log | 4.0 | 52 | 0.6792 | 0.57 | 0.4850 | 0.7732 | 0.57 |
| No log | 5.0 | 65 | 0.6408 | 0.67 | 0.6550 | 0.7210 | 0.67 |
| No log | 6.0 | 78 | 0.6174 | 0.7 | 0.6786 | 0.7952 | 0.7 |
| No log | 7.0 | 91 | 0.6121 | 0.66 | 0.6269 | 0.7760 | 0.66 |
| No log | 8.0 | 104 | 0.5098 | 0.76 | 0.7592 | 0.7683 | 0.76 |
| No log | 9.0 | 117 | 0.5120 | 0.77 | 0.7648 | 0.8077 | 0.77 |
| No log | 10.0 | 130 | 0.4524 | 0.8 | 0.8 | 0.8 | 0.8 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu128
- Datasets 2.19.1
- Tokenizers 0.21.2
- Downloads last month
- 5
Model tree for eren2222/bert-sst2
Base model
google-bert/bert-base-uncased