43061480318dee21af67da07d8b71a38

This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking-finetuned-squad on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6836
  • Data Size: 1.0
  • Epoch Runtime: 65.6905
  • Accuracy: 0.7672
  • F1 Macro: 0.2894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.5179 0 4.7544 0.0601 0.0378
No log 1 619 0.6918 0.0078 6.9843 0.7672 0.2894
No log 2 1238 0.6995 0.0156 6.5724 0.7672 0.2894
0.0169 3 1857 0.7036 0.0312 8.4295 0.7672 0.2894
0.0169 4 2476 0.6894 0.0625 10.3378 0.7672 0.2894
0.6698 5 3095 0.6894 0.125 13.9189 0.7672 0.2894
0.0642 6 3714 0.6844 0.25 22.5531 0.7672 0.2894
0.6727 7 4333 0.6773 0.5 36.9425 0.7672 0.2894
0.6787 8.0 4952 0.6804 1.0 68.0973 0.7672 0.2894
0.6502 9.0 5571 0.6782 1.0 65.5125 0.7672 0.2894
0.6652 10.0 6190 0.6867 1.0 65.2057 0.7672 0.2894
0.6506 11.0 6809 0.6836 1.0 65.6905 0.7672 0.2894

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for contemmcm/43061480318dee21af67da07d8b71a38

Evaluation results