--- language: eml language_name: Unknown language [eml] language_family: romance_galloitalic tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-romance_galloitalic license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.369 - name: best_isotropy type: isotropy value: 0.3584 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-04 --- # Unknown language [eml] - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Unknown language [eml]** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 2.942x | 2.95 | 0.4433% | 289,426 | | **16k** | 3.144x | 3.15 | 0.4738% | 270,763 | | **32k** | 3.369x 🏆 | 3.37 | 0.5076% | 252,742 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `'l è 'l nòm 'd un domìni genèric. Al funsiòuna da 'l zógn dal ed domìni tachê a ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | | 16k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | | 32k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | **Sample 2:** `'l è 'l nòm 'd un domìni genèric. Al funsiòuna da 'l setèmber dal ed domìni tach...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | | 16k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | | 32k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 | **Sample 3:** `Al 294 'l è 'n an edl III sécol dal Calendàri gregoriàn. Avenimèint Nê Mort III` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 | | 16k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 | | 32k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 | ### Key Findings - **Best Compression:** 32k achieves 3.369x compression - **Lowest UNK Rate:** 8k with 0.4433% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 855 | 9.74 | 4,527 | 49.2% | 80.8% | | **2-gram** | Subword | 342 🏆 | 8.42 | 2,464 | 62.9% | 97.8% | | **3-gram** | Word | 936 | 9.87 | 6,071 | 49.5% | 79.8% | | **3-gram** | Subword | 2,480 | 11.28 | 17,300 | 27.4% | 69.1% | | **4-gram** | Word | 1,262 | 10.30 | 9,814 | 45.9% | 76.0% | | **4-gram** | Subword | 9,840 | 13.26 | 65,901 | 17.3% | 46.3% | | **5-gram** | Word | 1,050 | 10.04 | 7,194 | 45.5% | 79.7% | | **5-gram** | Subword | 19,916 | 14.28 | 117,450 | 14.0% | 39.1% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `l è` | 4,349 | | 2 | `da l` | 2,854 | | 3 | `d un` | 2,584 | | 4 | `dal calendàri` | 1,948 | | 5 | `è n` | 1,667 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `l è n` | 1,665 | | 2 | `dal calendàri gregoriàn` | 1,584 | | 3 | `sécol dal calendàri` | 1,575 | | 4 | `è n an` | 1,575 | | 5 | `avenimèint nê mort` | 1,412 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `l è n an` | 1,575 | | 2 | `ed domìni tachê a` | 1,255 | | 3 | `a funsionèr da l` | 1,255 | | 4 | `domìni tachê a funsionèr` | 1,255 | | 5 | `tachê a funsionèr da` | 1,255 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `domìni tachê a funsionèr da` | 1,255 | | 2 | `ed domìni tachê a funsionèr` | 1,255 | | 3 | `tachê a funsionèr da l` | 1,255 | | 4 | `l è l nòm d` | 1,247 | | 5 | `l nòm d un domìni` | 1,247 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 44,681 | | 2 | `l _` | 36,354 | | 3 | `_ d` | 31,152 | | 4 | `_ a` | 28,707 | | 5 | `n _` | 26,332 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a l _` | 19,233 | | 2 | `_ d a` | 13,700 | | 3 | `_ i n` | 10,014 | | 4 | `l a _` | 9,054 | | 5 | `d a l` | 8,840 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d a l` | 8,766 | | 2 | `d a l _` | 8,710 | | 3 | `_ a l _` | 7,884 | | 4 | `_ e d _` | 6,634 | | 5 | `_ l a _` | 5,983 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d a l _` | 8,679 | | 2 | `_ d a _ '` | 2,988 | | 3 | `' l _ è _` | 2,975 | | 4 | `l _ è _ '` | 2,854 | | 5 | `d a _ ' l` | 2,762 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 342 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~39% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.6144 | 1.531 | 3.27 | 38,079 | 38.6% | | **1** | Subword | 1.2142 | 2.320 | 11.72 | 398 | 0.0% | | **2** | Word | 0.1859 | 1.138 | 1.39 | 123,729 | 81.4% | | **2** | Subword | 1.1401 | 2.204 | 6.72 | 4,661 | 0.0% | | **3** | Word | 0.0688 | 1.049 | 1.12 | 170,769 | 93.1% | | **3** | Subword | 0.8376 | 1.787 | 3.69 | 31,279 | 16.2% | | **4** | Word | 0.0286 🏆 | 1.020 | 1.05 | 189,112 | 97.1% | | **4** | Subword | 0.5759 | 1.491 | 2.30 | 115,443 | 42.4% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `l é al progrâma pc 12 518 519 520 gonèl 22 ed domìni genèric al urèl` 2. `al funsiòuna da per 4 quèśi prim sfènic difetìv 322 in sensu laudator temporis acti prudentes` 3. `dal crìst 4 d oro una cumêdia d antonino inferito da l è l è l` **Context Size 2:** 1. `l è n an dal vii sécol dal calendàri gregoriàn avenimèint nê guélf vi mort xii` 2. `d un nùmer triangolèr moltìplica per 5 d un nùmer quèder moltìplica per 3 d un domìni` 3. `dal calendàri gregoriàn avenimèint nê mort x` **Context Size 3:** 1. `l è n an edl iii sécol dal calendàri gregoriàn avenimèint nê mort i` 2. `dal calendàri gregoriàn avenimèint nê mort viii` 3. `è n an edl viii sécol dal calendàri gregoriàn avenimèint nê mort xvi` **Context Size 4:** 1. `l è n an edl ix sécol dal calendàri gregoriàn avenimèint nê mort v` 2. `domìni tachê a funsionèr da l` 3. `ed domìni tachê a funsionèr da l` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_pe_gotili_l'n_i` 2. `andogrin_menèiṣa` 3. `i_incōridl_stêst` **Context Size 2:** 1. `a_cuns_e_tòra_fiō` 2. `l_séco,_ed_unèli_` 3. `_drê_avōl_è_'l_59` **Context Size 3:** 1. `al_sît_la_cà_paolo` 2. `_da_63_in_difestìl` 3. `_in-dóvv_a_un_di_c` **Context Size 4:** 1. `_dal_calendàri_greg` 2. `dal_viii_sèc._préma` 3. `_al_funsiòuna_da_'l` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.1% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (115,443 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 14,744 | | Total Tokens | 272,012 | | Mean Frequency | 18.45 | | Median Frequency | 3 | | Frequency Std Dev | 223.57 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | l | 12,992 | | 2 | al | 10,267 | | 3 | dal | 8,736 | | 4 | a | 7,317 | | 5 | ed | 6,740 | | 6 | la | 6,622 | | 7 | d | 5,491 | | 8 | in | 5,032 | | 9 | è | 4,792 | | 10 | da | 4,480 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | espositìv | 2 | | 2 | ecosistèma | 2 | | 3 | trasformasiòun | 2 | | 4 | galleria | 2 | | 5 | space | 2 | | 6 | velò | 2 | | 7 | arriv | 2 | | 8 | sèda | 2 | | 9 | cumé | 2 | | 10 | zûg | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0159 | | R² (Goodness of Fit) | 0.990784 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 57.7% | | Top 1,000 | 77.8% | | Top 5,000 | 90.7% | | Top 10,000 | 96.5% | ### Key Findings - **Zipf Compliance:** R²=0.9908 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 57.7% of corpus - **Long Tail:** 4,744 words needed for remaining 3.5% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.3584 | 0.4391 | N/A | N/A | | **mono_64d** | 64 | 0.1134 | 0.4504 | N/A | N/A | | **mono_128d** | 128 | 0.0166 | 0.4596 | N/A | N/A | | **aligned_32d** | 32 | 0.3584 🏆 | 0.4411 | 0.0140 | 0.1660 | | **aligned_64d** | 64 | 0.1134 | 0.4292 | 0.0460 | 0.2440 | | **aligned_128d** | 128 | 0.0166 | 0.4457 | 0.0400 | 0.2640 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.3584 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.4442. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 4.6% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **1.037** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ca` | cal, cavésin, caviân | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-a` | scōla, algebra, câṣva | | `-um` | coelum, adsum, 217śum | | `-na` | vègna, teresina, ruvîna | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `asiò` | 1.80x | 17 contexts | asiòṅ, asiòun, frasiòn | | `siòu` | 1.79x | 17 contexts | asiòun, sesiòun, lesiòun | | `purt` | 1.55x | 23 contexts | purtâ, purtê, purtä | | `iòun` | 1.73x | 16 contexts | uniòun, asiòun, sesiòun | | `nter` | 1.50x | 24 contexts | inter, nterra, dänter | | `sèin` | 1.51x | 17 contexts | sèins, sèint, casèin | | `tèin` | 1.48x | 16 contexts | latèin, estèin, putèin | | `ital` | 1.53x | 14 contexts | italy, italo, vitali | | `tôri` | 1.78x | 9 contexts | stôri, stôric, stôria | | `rèin` | 1.46x | 14 contexts | rèina, trèin, terèin | | `inte` | 1.59x | 11 contexts | inter, intern, interès | | `mèin` | 1.79x | 8 contexts | mèint, camèin, mumèint | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ca` | `-a` | 53 words | cavacürta, canpâgna | | `-ca` | `-na` | 16 words | canpâgna, catalógna | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | cascaggna | **`ca-scagg-na`** | 3.0 | `scagg` | | califòrgna | **`ca-lifòrg-na`** | 3.0 | `lifòrg` | | campàggna | **`ca-mpàgg-na`** | 3.0 | `mpàgg` | | castlaran | **`ca-stlaran`** | 1.5 | `stlaran` | | philosophum | **`philosoph-um`** | 1.5 | `philosoph` | | privilegium | **`privilegi-um`** | 1.5 | `privilegi` | | calandäri | **`ca-landäri`** | 1.5 | `landäri` | | referendum | **`referend-um`** | 1.5 | `referend` | | metropolitana | **`metropolita-na`** | 1.5 | `metropolita` | | carabinieri | **`ca-rabinieri`** | 1.5 | `rabinieri` | | parmigiana | **`parmigia-na`** | 1.5 | `parmigia` | | funsiòuna | **`funsiòu-na`** | 1.5 | `funsiòu` | | carpigiano | **`ca-rpigiano`** | 1.5 | `rpigiano` | | caraterésstic | **`ca-raterésstic`** | 1.5 | `raterésstic` | | indipendentîxum | **`indipendentîx-um`** | 1.5 | `indipendentîx` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Unknown language [eml] shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **32k BPE** | Best compression (3.37x) | | N-gram | **2-gram** | Lowest perplexity (342) | | Markov | **Context-4** | Highest predictability (97.1%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-04 14:33:51*