Upload all models and assets for dsb (20251201)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +6 -0
- README.md +558 -0
- models/embeddings/monolingual/dsb_128d.bin +3 -0
- models/embeddings/monolingual/dsb_128d.meta.json +1 -0
- models/embeddings/monolingual/dsb_128d_metadata.json +13 -0
- models/embeddings/monolingual/dsb_32d.bin +3 -0
- models/embeddings/monolingual/dsb_32d.meta.json +1 -0
- models/embeddings/monolingual/dsb_32d_metadata.json +13 -0
- models/embeddings/monolingual/dsb_64d.bin +3 -0
- models/embeddings/monolingual/dsb_64d.meta.json +1 -0
- models/embeddings/monolingual/dsb_64d_metadata.json +13 -0
- models/subword_markov/dsb_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/dsb_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/dsb_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/dsb_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/dsb_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/dsb_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/dsb_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/dsb_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/dsb_2gram_subword.parquet +3 -0
- models/subword_ngram/dsb_2gram_subword_metadata.json +7 -0
- models/subword_ngram/dsb_3gram_subword.parquet +3 -0
- models/subword_ngram/dsb_3gram_subword_metadata.json +7 -0
- models/subword_ngram/dsb_4gram_subword.parquet +3 -0
- models/subword_ngram/dsb_4gram_subword_metadata.json +7 -0
- models/tokenizer/dsb_tokenizer_16k.model +3 -0
- models/tokenizer/dsb_tokenizer_16k.vocab +0 -0
- models/tokenizer/dsb_tokenizer_32k.model +3 -0
- models/tokenizer/dsb_tokenizer_32k.vocab +0 -0
- models/tokenizer/dsb_tokenizer_64k.model +3 -0
- models/tokenizer/dsb_tokenizer_64k.vocab +0 -0
- models/tokenizer/dsb_tokenizer_8k.model +3 -0
- models/tokenizer/dsb_tokenizer_8k.vocab +0 -0
- models/vocabulary/dsb_vocabulary.parquet +3 -0
- models/vocabulary/dsb_vocabulary_metadata.json +16 -0
- models/word_markov/dsb_markov_ctx1_word.parquet +3 -0
- models/word_markov/dsb_markov_ctx1_word_metadata.json +7 -0
- models/word_markov/dsb_markov_ctx2_word.parquet +3 -0
- models/word_markov/dsb_markov_ctx2_word_metadata.json +7 -0
- models/word_markov/dsb_markov_ctx3_word.parquet +3 -0
- models/word_markov/dsb_markov_ctx3_word_metadata.json +7 -0
- models/word_markov/dsb_markov_ctx4_word.parquet +3 -0
- models/word_markov/dsb_markov_ctx4_word_metadata.json +7 -0
- models/word_ngram/dsb_2gram_word.parquet +3 -0
- models/word_ngram/dsb_2gram_word_metadata.json +7 -0
- models/word_ngram/dsb_3gram_word.parquet +3 -0
- models/word_ngram/dsb_3gram_word_metadata.json +7 -0
- models/word_ngram/dsb_4gram_word.parquet +3 -0
- models/word_ngram/dsb_4gram_word_metadata.json +7 -0
- visualizations/embedding_isotropy.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: dsb
|
| 3 |
+
language_name: DSB
|
| 4 |
+
language_family: slavic_west
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- monolingual
|
| 14 |
+
- family-slavic_west
|
| 15 |
+
license: mit
|
| 16 |
+
library_name: wikilangs
|
| 17 |
+
pipeline_tag: feature-extraction
|
| 18 |
+
datasets:
|
| 19 |
+
- omarkamali/wikipedia-monthly
|
| 20 |
+
dataset_info:
|
| 21 |
+
name: wikipedia-monthly
|
| 22 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 23 |
+
metrics:
|
| 24 |
+
- name: best_compression_ratio
|
| 25 |
+
type: compression
|
| 26 |
+
value: 4.294
|
| 27 |
+
- name: best_isotropy
|
| 28 |
+
type: isotropy
|
| 29 |
+
value: 0.8252
|
| 30 |
+
- name: vocabulary_size
|
| 31 |
+
type: vocab
|
| 32 |
+
value: 32309
|
| 33 |
+
generated: 2025-12-30
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# DSB - Wikilangs Models
|
| 37 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
+
|
| 39 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **DSB** Wikipedia data.
|
| 40 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
+
|
| 42 |
+
## 📋 Repository Contents
|
| 43 |
+
|
| 44 |
+
### Models & Assets
|
| 45 |
+
|
| 46 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3 and 4)
|
| 49 |
+
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions
|
| 51 |
+
- Language Vocabulary
|
| 52 |
+
- Language Statistics
|
| 53 |
+

|
| 54 |
+
|
| 55 |
+
### Analysis and Evaluation
|
| 56 |
+
|
| 57 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 58 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 59 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
+
- [6. Summary & Recommendations](#6-summary--recommendations)
|
| 63 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
+
- [Visualizations Index](#visualizations-index)
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
## 1. Tokenizer Evaluation
|
| 68 |
+
|
| 69 |
+

|
| 70 |
+
|
| 71 |
+
### Results
|
| 72 |
+
|
| 73 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
+
|------------|-------------|---------------|----------|--------------|
|
| 75 |
+
| **8k** | 3.271x | 3.18 | 0.0992% | 351,825 |
|
| 76 |
+
| **16k** | 3.624x | 3.52 | 0.1099% | 317,561 |
|
| 77 |
+
| **32k** | 3.965x | 3.86 | 0.1202% | 290,267 |
|
| 78 |
+
| **64k** | 4.294x 🏆 | 4.18 | 0.1302% | 268,009 |
|
| 79 |
+
|
| 80 |
+
### Tokenization Examples
|
| 81 |
+
|
| 82 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
+
|
| 84 |
+
**Sample 1:** `Złocieniec jo město w Pólskej, w pódwjacoropomorskem wójwodstwje. Lažy w Pomorsk...`
|
| 85 |
+
|
| 86 |
+
| Vocab | Tokens | Count |
|
| 87 |
+
|-------|--------|-------|
|
| 88 |
+
| 8k | `▁zło cie niec ▁jo ▁město ▁w ▁pólskej , ▁w ▁pódwjacoro ... (+13 more)` | 23 |
|
| 89 |
+
| 16k | `▁zło cie niec ▁jo ▁město ▁w ▁pólskej , ▁w ▁pódwjacoro ... (+13 more)` | 23 |
|
| 90 |
+
| 32k | `▁zło cie niec ▁jo ▁město ▁w ▁pólskej , ▁w ▁pódwjacoro ... (+13 more)` | 23 |
|
| 91 |
+
| 64k | `▁zło cieniec ▁jo ▁město ▁w ▁pólskej , ▁w ▁pódwjacoro pomorskem ... (+12 more)` | 22 |
|
| 92 |
+
|
| 93 |
+
**Sample 2:** `Nowy Dwór Królewski jo wjas w Pólskej.
|
| 94 |
+
|
| 95 |
+
Kurów lažy mjazy městoma Chelmno a Torun...`
|
| 96 |
+
|
| 97 |
+
| Vocab | Tokens | Count |
|
| 98 |
+
|-------|--------|-------|
|
| 99 |
+
| 8k | `▁nowy ▁dwór ▁k ró le wski ▁jo ▁wjas ▁w ▁pólskej ... (+21 more)` | 31 |
|
| 100 |
+
| 16k | `▁nowy ▁dwór ▁kró le wski ▁jo ▁wjas ▁w ▁pólskej . ... (+19 more)` | 29 |
|
| 101 |
+
| 32k | `▁nowy ▁dwór ▁króle wski ▁jo ▁wjas ▁w ▁pólskej . ▁kurów ... (+16 more)` | 26 |
|
| 102 |
+
| 64k | `▁nowy ▁dwór ▁króle wski ▁jo ▁wjas ▁w ▁pólskej . ▁kurów ... (+15 more)` | 25 |
|
| 103 |
+
|
| 104 |
+
**Sample 3:** `Janusz Gajos (* 23. septembra 1939) jo pólski grajaŕ, fotograf a pedagog.
|
| 105 |
+
thumb
|
| 106 |
+
...`
|
| 107 |
+
|
| 108 |
+
| Vocab | Tokens | Count |
|
| 109 |
+
|-------|--------|-------|
|
| 110 |
+
| 8k | `▁jan usz ▁ga jo s ▁(* ▁ 2 3 . ... (+33 more)` | 43 |
|
| 111 |
+
| 16k | `▁jan usz ▁ga jo s ▁(* ▁ 2 3 . ... (+32 more)` | 42 |
|
| 112 |
+
| 32k | `▁janusz ▁ga jos ▁(* ▁ 2 3 . ▁septembra ▁ ... (+30 more)` | 40 |
|
| 113 |
+
| 64k | `▁janusz ▁gajos ▁(* ▁ 2 3 . ▁septembra ▁ 1 ... (+29 more)` | 39 |
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
### Key Findings
|
| 117 |
+
|
| 118 |
+
- **Best Compression:** 64k achieves 4.294x compression
|
| 119 |
+
- **Lowest UNK Rate:** 8k with 0.0992% unknown tokens
|
| 120 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
## 2. N-gram Model Evaluation
|
| 125 |
+
|
| 126 |
+

|
| 127 |
+
|
| 128 |
+

|
| 129 |
+
|
| 130 |
+
### Results
|
| 131 |
+
|
| 132 |
+
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 133 |
+
|--------|------------|---------|----------------|------------------|-------------------|
|
| 134 |
+
| **2-gram** | 5,225 🏆 | 12.35 | 14,685 | 19.8% | 49.5% |
|
| 135 |
+
| **2-gram** | 508 🏆 | 8.99 | 4,003 | 51.9% | 96.7% |
|
| 136 |
+
| **3-gram** | 10,031 | 13.29 | 21,515 | 13.6% | 36.7% |
|
| 137 |
+
| **3-gram** | 4,632 | 12.18 | 29,259 | 18.2% | 55.2% |
|
| 138 |
+
| **4-gram** | 19,104 | 14.22 | 37,295 | 10.0% | 27.6% |
|
| 139 |
+
| **4-gram** | 23,026 | 14.49 | 127,625 | 9.2% | 29.7% |
|
| 140 |
+
|
| 141 |
+
### Top 5 N-grams by Size
|
| 142 |
+
|
| 143 |
+
**2-grams:**
|
| 144 |
+
|
| 145 |
+
| Rank | N-gram | Count |
|
| 146 |
+
|------|--------|-------|
|
| 147 |
+
| 1 | `kategorija :` | 7,667 |
|
| 148 |
+
| 2 | `) jo` | 2,004 |
|
| 149 |
+
| 3 | `) .` | 1,655 |
|
| 150 |
+
| 4 | `( *` | 1,443 |
|
| 151 |
+
| 5 | `) ,` | 1,402 |
|
| 152 |
+
|
| 153 |
+
**3-grams:**
|
| 154 |
+
|
| 155 |
+
| Rank | N-gram | Count |
|
| 156 |
+
|------|--------|-------|
|
| 157 |
+
| 1 | `kategorija : sedlišćo` | 991 |
|
| 158 |
+
| 2 | `: sedlišćo w` | 874 |
|
| 159 |
+
| 3 | `. kategorija :` | 760 |
|
| 160 |
+
| 4 | `kategorija : roź` | 672 |
|
| 161 |
+
| 5 | `: roź .` | 672 |
|
| 162 |
+
|
| 163 |
+
**4-grams:**
|
| 164 |
+
|
| 165 |
+
| Rank | N-gram | Count |
|
| 166 |
+
|------|--------|-------|
|
| 167 |
+
| 1 | `kategorija : sedlišćo w` | 874 |
|
| 168 |
+
| 2 | `kategorija : roź .` | 672 |
|
| 169 |
+
| 3 | `kategorija : wum .` | 395 |
|
| 170 |
+
| 4 | `978 - 3 -` | 367 |
|
| 171 |
+
| 5 | `isbn 978 - 3` | 359 |
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
### Key Findings
|
| 175 |
+
|
| 176 |
+
- **Best Perplexity:** 2-gram with 508
|
| 177 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 178 |
+
- **Coverage:** Top-1000 patterns cover ~30% of corpus
|
| 179 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 180 |
+
|
| 181 |
+
---
|
| 182 |
+
## 3. Markov Chain Evaluation
|
| 183 |
+
|
| 184 |
+

|
| 185 |
+
|
| 186 |
+

|
| 187 |
+
|
| 188 |
+
### Results
|
| 189 |
+
|
| 190 |
+
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 191 |
+
|---------|-------------|------------|------------------|-----------------|----------------|
|
| 192 |
+
| **1** | 0.5742 | 1.489 | 3.58 | 83,705 | 42.6% |
|
| 193 |
+
| **1** | 1.1222 | 2.177 | 9.59 | 1,062 | 0.0% |
|
| 194 |
+
| **2** | 0.2165 | 1.162 | 1.49 | 299,024 | 78.3% |
|
| 195 |
+
| **2** | 1.0246 | 2.034 | 5.91 | 10,184 | 0.0% |
|
| 196 |
+
| **3** | 0.0847 | 1.061 | 1.15 | 446,488 | 91.5% |
|
| 197 |
+
| **3** | 0.8420 | 1.793 | 3.87 | 60,186 | 15.8% |
|
| 198 |
+
| **4** | 0.0411 🏆 | 1.029 | 1.07 | 514,008 | 95.9% |
|
| 199 |
+
| **4** | 0.6005 🏆 | 1.516 | 2.44 | 232,636 | 39.9% |
|
| 200 |
+
|
| 201 |
+
### Generated Text Samples
|
| 202 |
+
|
| 203 |
+
Below are text samples generated from each Markov chain model:
|
| 204 |
+
|
| 205 |
+
**Context Size 1:**
|
| 206 |
+
|
| 207 |
+
1. `. konwencionelna mutageneza pśi albańskej a litawskeju ( - 1962 : hugo gunckel lüer – nimski`
|
| 208 |
+
2. `, 1 , leipzig palmenhaus auf der räuber hotzenplotz " kaž “ a twórje kupy ,`
|
| 209 |
+
3. `: jazor 58 . aitingk , ale teke literarne myto ćišinskego kategorija : prizaŕske bórkowy amt`
|
| 210 |
+
|
| 211 |
+
**Context Size 2:**
|
| 212 |
+
|
| 213 |
+
1. `kategorija : sedlišćo w dolnej łužycy . wótkaze lisćina galiskich słowow pśi wordgumbo nastawk pśi i...`
|
| 214 |
+
2. `) jo družyna droznow . samica jo brunocarna , mjaztym až se w šyrokem źělu pódpołnocneje afriki`
|
| 215 |
+
3. `) . města nejwětše města su : santiago de cuba ) jo historiska slězyna japańskeje tragedije .`
|
| 216 |
+
|
| 217 |
+
**Context Size 3:**
|
| 218 |
+
|
| 219 |
+
1. `kategorija : sedlišćo w pólskej kategorija : pomorske wójwodstwo kategorija : sedlišćo w českej kate...`
|
| 220 |
+
2. `: sedlišćo w baden - württembergskej kategorija : rěka w českej , ako na pśikład za staty ,`
|
| 221 |
+
3. `. kategorija : sad kategorija : bomy kategorija : hybridy`
|
| 222 |
+
|
| 223 |
+
**Context Size 4:**
|
| 224 |
+
|
| 225 |
+
1. `kategorija : sedlišćo w argentinskej kategorija : stolica w europje kategorija : rěka , alfabetiski ...`
|
| 226 |
+
2. `kategorija : roź . 1757 kategorija : wum . 1913`
|
| 227 |
+
3. `kategorija : wum . 1985 kategorija : słowakski spiwaŕ kategorija : muž`
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
### Key Findings
|
| 231 |
+
|
| 232 |
+
- **Best Predictability:** Context-4 with 95.9% predictability
|
| 233 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 234 |
+
- **Memory Trade-off:** Larger contexts require more storage (232,636 contexts)
|
| 235 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 236 |
+
|
| 237 |
+
---
|
| 238 |
+
## 4. Vocabulary Analysis
|
| 239 |
+
|
| 240 |
+

|
| 241 |
+
|
| 242 |
+

|
| 243 |
+
|
| 244 |
+

|
| 245 |
+
|
| 246 |
+
### Statistics
|
| 247 |
+
|
| 248 |
+
| Metric | Value |
|
| 249 |
+
|--------|-------|
|
| 250 |
+
| Vocabulary Size | 32,309 |
|
| 251 |
+
| Total Tokens | 432,054 |
|
| 252 |
+
| Mean Frequency | 13.37 |
|
| 253 |
+
| Median Frequency | 3 |
|
| 254 |
+
| Frequency Std Dev | 142.47 |
|
| 255 |
+
|
| 256 |
+
### Most Common Words
|
| 257 |
+
|
| 258 |
+
| Rank | Word | Frequency |
|
| 259 |
+
|------|------|-----------|
|
| 260 |
+
| 1 | a | 12,388 |
|
| 261 |
+
| 2 | w | 12,290 |
|
| 262 |
+
| 3 | jo | 11,552 |
|
| 263 |
+
| 4 | kategorija | 7,674 |
|
| 264 |
+
| 5 | na | 4,664 |
|
| 265 |
+
| 6 | z | 4,262 |
|
| 266 |
+
| 7 | se | 3,646 |
|
| 267 |
+
| 8 | wót | 3,524 |
|
| 268 |
+
| 9 | su | 2,927 |
|
| 269 |
+
| 10 | do | 2,441 |
|
| 270 |
+
|
| 271 |
+
### Least Common Words (from vocabulary)
|
| 272 |
+
|
| 273 |
+
| Rank | Word | Frequency |
|
| 274 |
+
|------|------|-----------|
|
| 275 |
+
| 1 | 1474wjerchojstwo | 2 |
|
| 276 |
+
| 2 | wolgast5 | 2 |
|
| 277 |
+
| 3 | 1478wjerchojstwo | 2 |
|
| 278 |
+
| 4 | 1592 | 2 |
|
| 279 |
+
| 5 | 1625wjerchojstwo | 2 |
|
| 280 |
+
| 6 | zachdniego | 2 |
|
| 281 |
+
| 7 | gdanskiego | 2 |
|
| 282 |
+
| 8 | podzially | 2 |
|
| 283 |
+
| 9 | ujazd | 2 |
|
| 284 |
+
| 10 | mojš | 2 |
|
| 285 |
+
|
| 286 |
+
### Zipf's Law Analysis
|
| 287 |
+
|
| 288 |
+
| Metric | Value |
|
| 289 |
+
|--------|-------|
|
| 290 |
+
| Zipf Coefficient | 0.9658 |
|
| 291 |
+
| R² (Goodness of Fit) | 0.995856 |
|
| 292 |
+
| Adherence Quality | **excellent** |
|
| 293 |
+
|
| 294 |
+
### Coverage Analysis
|
| 295 |
+
|
| 296 |
+
| Top N Words | Coverage |
|
| 297 |
+
|-------------|----------|
|
| 298 |
+
| Top 100 | 30.4% |
|
| 299 |
+
| Top 1,000 | 57.0% |
|
| 300 |
+
| Top 5,000 | 77.2% |
|
| 301 |
+
| Top 10,000 | 85.9% |
|
| 302 |
+
|
| 303 |
+
### Key Findings
|
| 304 |
+
|
| 305 |
+
- **Zipf Compliance:** R²=0.9959 indicates excellent adherence to Zipf's law
|
| 306 |
+
- **High Frequency Dominance:** Top 100 words cover 30.4% of corpus
|
| 307 |
+
- **Long Tail:** 22,309 words needed for remaining 14.1% coverage
|
| 308 |
+
|
| 309 |
+
---
|
| 310 |
+
## 5. Word Embeddings Evaluation
|
| 311 |
+
|
| 312 |
+

|
| 313 |
+
|
| 314 |
+

|
| 315 |
+
|
| 316 |
+

|
| 317 |
+
|
| 318 |
+

|
| 319 |
+
|
| 320 |
+
### Model Comparison
|
| 321 |
+
|
| 322 |
+
| Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
|
| 323 |
+
|-------|------------|-----------|----------|----------|----------|
|
| 324 |
+
| **mono_32d** | 11,406 | 32 | 4.255 | 0.918 | 0.8252 🏆 |
|
| 325 |
+
| **mono_64d** | 11,406 | 64 | 4.511 | 0.859 | 0.5783 |
|
| 326 |
+
| **mono_128d** | 11,406 | 128 | 4.576 | 0.852 | 0.1767 |
|
| 327 |
+
| **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
|
| 328 |
+
|
| 329 |
+
### Key Findings
|
| 330 |
+
|
| 331 |
+
- **Best Isotropy:** mono_32d with 0.8252 (more uniform distribution)
|
| 332 |
+
- **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
|
| 333 |
+
- **Vocabulary Coverage:** All models cover 11,406 words
|
| 334 |
+
- **Recommendation:** 100d for balanced semantic capture and efficiency
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
## 6. Summary & Recommendations
|
| 338 |
+
|
| 339 |
+

|
| 340 |
+
|
| 341 |
+
### Production Recommendations
|
| 342 |
+
|
| 343 |
+
| Component | Recommended | Rationale |
|
| 344 |
+
|-----------|-------------|-----------|
|
| 345 |
+
| Tokenizer | **32k BPE** | Best compression (4.29x) with low UNK rate |
|
| 346 |
+
| N-gram | **5-gram** | Lowest perplexity (508) |
|
| 347 |
+
| Markov | **Context-4** | Highest predictability (95.9%) |
|
| 348 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 349 |
+
|
| 350 |
+
---
|
| 351 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 352 |
+
|
| 353 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 354 |
+
|
| 355 |
+
### Tokenizer Metrics
|
| 356 |
+
|
| 357 |
+
**Compression Ratio**
|
| 358 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 359 |
+
>
|
| 360 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 361 |
+
>
|
| 362 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 363 |
+
|
| 364 |
+
**Average Token Length (Fertility)**
|
| 365 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 366 |
+
>
|
| 367 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 368 |
+
>
|
| 369 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 370 |
+
|
| 371 |
+
**Unknown Token Rate (OOV Rate)**
|
| 372 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 373 |
+
>
|
| 374 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 375 |
+
>
|
| 376 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 377 |
+
|
| 378 |
+
### N-gram Model Metrics
|
| 379 |
+
|
| 380 |
+
**Perplexity**
|
| 381 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 382 |
+
>
|
| 383 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 384 |
+
>
|
| 385 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 386 |
+
|
| 387 |
+
**Entropy**
|
| 388 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 389 |
+
>
|
| 390 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 391 |
+
>
|
| 392 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 393 |
+
|
| 394 |
+
**Coverage (Top-K)**
|
| 395 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 396 |
+
>
|
| 397 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 398 |
+
>
|
| 399 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 400 |
+
|
| 401 |
+
### Markov Chain Metrics
|
| 402 |
+
|
| 403 |
+
**Average Entropy**
|
| 404 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 405 |
+
>
|
| 406 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 407 |
+
>
|
| 408 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 409 |
+
|
| 410 |
+
**Branching Factor**
|
| 411 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 412 |
+
>
|
| 413 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 414 |
+
>
|
| 415 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 416 |
+
|
| 417 |
+
**Predictability**
|
| 418 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 419 |
+
>
|
| 420 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 421 |
+
>
|
| 422 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 423 |
+
|
| 424 |
+
### Vocabulary & Zipf's Law Metrics
|
| 425 |
+
|
| 426 |
+
**Zipf's Coefficient**
|
| 427 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 428 |
+
>
|
| 429 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 430 |
+
>
|
| 431 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 432 |
+
|
| 433 |
+
**R² (Coefficient of Determination)**
|
| 434 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 435 |
+
>
|
| 436 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 437 |
+
>
|
| 438 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 439 |
+
|
| 440 |
+
**Vocabulary Coverage**
|
| 441 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 442 |
+
>
|
| 443 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 444 |
+
>
|
| 445 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 446 |
+
|
| 447 |
+
### Word Embedding Metrics
|
| 448 |
+
|
| 449 |
+
**Isotropy**
|
| 450 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 451 |
+
>
|
| 452 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 453 |
+
>
|
| 454 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 455 |
+
|
| 456 |
+
**Average Norm**
|
| 457 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 458 |
+
>
|
| 459 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 460 |
+
>
|
| 461 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 462 |
+
|
| 463 |
+
**Cosine Similarity**
|
| 464 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 465 |
+
>
|
| 466 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 467 |
+
>
|
| 468 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 469 |
+
|
| 470 |
+
**t-SNE Visualization**
|
| 471 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 472 |
+
>
|
| 473 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 474 |
+
>
|
| 475 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 476 |
+
|
| 477 |
+
### General Interpretation Guidelines
|
| 478 |
+
|
| 479 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 480 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 481 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 482 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 483 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
### Visualizations Index
|
| 487 |
+
|
| 488 |
+
| Visualization | Description |
|
| 489 |
+
|---------------|-------------|
|
| 490 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 491 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 492 |
+
| Tokenizer OOV | Unknown token rates |
|
| 493 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 494 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 495 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 496 |
+
| N-gram Coverage | Top pattern coverage |
|
| 497 |
+
| N-gram Unique | Unique n-gram counts |
|
| 498 |
+
| Markov Entropy | Entropy by context size |
|
| 499 |
+
| Markov Branching | Branching factor by context |
|
| 500 |
+
| Markov Contexts | Unique context counts |
|
| 501 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 502 |
+
| Vocab Frequency | Word frequency distribution |
|
| 503 |
+
| Top 20 Words | Most frequent words |
|
| 504 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 505 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 506 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 507 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 508 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 509 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 510 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 511 |
+
| Position Encoding | Encoding method comparison |
|
| 512 |
+
| Model Sizes | Storage requirements |
|
| 513 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 514 |
+
|
| 515 |
+
---
|
| 516 |
+
## About This Project
|
| 517 |
+
|
| 518 |
+
### Data Source
|
| 519 |
+
|
| 520 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 521 |
+
|
| 522 |
+
### Project
|
| 523 |
+
|
| 524 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 525 |
+
|
| 526 |
+
### Maintainer
|
| 527 |
+
|
| 528 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 529 |
+
|
| 530 |
+
### Citation
|
| 531 |
+
|
| 532 |
+
If you use these models in your research, please cite:
|
| 533 |
+
|
| 534 |
+
```bibtex
|
| 535 |
+
@misc{wikilangs2025,
|
| 536 |
+
author = {Kamali, Omar},
|
| 537 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 538 |
+
year = {2025},
|
| 539 |
+
publisher = {HuggingFace},
|
| 540 |
+
url = {https://huggingface.co/wikilangs}
|
| 541 |
+
institution = {Omneity Labs}
|
| 542 |
+
}
|
| 543 |
+
```
|
| 544 |
+
|
| 545 |
+
### License
|
| 546 |
+
|
| 547 |
+
MIT License - Free for academic and commercial use.
|
| 548 |
+
|
| 549 |
+
### Links
|
| 550 |
+
|
| 551 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 552 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 553 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 554 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 555 |
+
---
|
| 556 |
+
*Generated by Wikilangs Models Pipeline*
|
| 557 |
+
|
| 558 |
+
*Report Date: 2025-12-30 08:33:54*
|
models/embeddings/monolingual/dsb_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69c984e87d1636c608606c4c5465d8002825ca2f54d231f3d0a0277f593edecb
|
| 3 |
+
size 1035879476
|
models/embeddings/monolingual/dsb_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dsb", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/dsb_128d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dsb",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 128,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 11406
|
| 13 |
+
}
|
models/embeddings/monolingual/dsb_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:081fb3a085c2c647fb4256975b1946eef7c9db9c3214387b4f47c18933cc0175
|
| 3 |
+
size 259119668
|
models/embeddings/monolingual/dsb_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dsb", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/dsb_32d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dsb",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 32,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 11406
|
| 13 |
+
}
|
models/embeddings/monolingual/dsb_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:811da793a1d91d94aecf05624b1782db2a0780ebddab0716c5a7449a1314bee9
|
| 3 |
+
size 518039604
|
models/embeddings/monolingual/dsb_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "dsb", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/dsb_64d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dsb",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 64,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 11406
|
| 13 |
+
}
|
models/subword_markov/dsb_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e75991d06d216913d5349e487fb7f5dda5adf4a84e1112c7d75804a41f526651
|
| 3 |
+
size 78473
|
models/subword_markov/dsb_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 1062,
|
| 6 |
+
"total_transitions": 3435229
|
| 7 |
+
}
|
models/subword_markov/dsb_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2d04158c387dad22bea4d026f6486e27063cbccf1b5b267c23067200f38df80
|
| 3 |
+
size 474937
|
models/subword_markov/dsb_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 10184,
|
| 6 |
+
"total_transitions": 3431780
|
| 7 |
+
}
|
models/subword_markov/dsb_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65e073c2672b04e0cc6a210d14c210bd5f5b2d610e9df300eec4e645bb58b544
|
| 3 |
+
size 1661127
|
models/subword_markov/dsb_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 60186,
|
| 6 |
+
"total_transitions": 3428331
|
| 7 |
+
}
|
models/subword_markov/dsb_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e1e13ba8381c4b0aeedbfd268e3df569421c02c0509adce385934b61c9d4134
|
| 3 |
+
size 4548151
|
models/subword_markov/dsb_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 232636,
|
| 6 |
+
"total_transitions": 3424882
|
| 7 |
+
}
|
models/subword_ngram/dsb_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54ab8a0b169ac29131c7497aab72ed0c6262588ee25933132b96a9ea893c6cab
|
| 3 |
+
size 52880
|
models/subword_ngram/dsb_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 4003,
|
| 6 |
+
"total_ngrams": 3435229
|
| 7 |
+
}
|
models/subword_ngram/dsb_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:491b077d6277a92677cbfb36b213f6c9845b6625d639c685caaf3c81b098ae71
|
| 3 |
+
size 355310
|
models/subword_ngram/dsb_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 29259,
|
| 6 |
+
"total_ngrams": 3431780
|
| 7 |
+
}
|
models/subword_ngram/dsb_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0210a38e1f600c563d26ca91f697d6f95cf6c35633b5d062baf24f897ca3ea6
|
| 3 |
+
size 1444626
|
models/subword_ngram/dsb_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 127625,
|
| 6 |
+
"total_ngrams": 3428331
|
| 7 |
+
}
|
models/tokenizer/dsb_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83223ed94450b083f445917ad19d45108f784776f35590e24106f870e89fc048
|
| 3 |
+
size 509210
|
models/tokenizer/dsb_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dsb_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:385d9c2bd426307bc0210de4e33f8ef09b6d82186b16307f29650deb8b0128a5
|
| 3 |
+
size 785019
|
models/tokenizer/dsb_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dsb_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be1039984143149d1392ae5a765816e6ff2af6dad234612968afce460c6ae6d9
|
| 3 |
+
size 1380290
|
models/tokenizer/dsb_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/dsb_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:230d8ebcf4cbf468966a99ee03e43588c6326a65ab777732705c0175ce721003
|
| 3 |
+
size 372857
|
models/tokenizer/dsb_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/dsb_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87ff7058d1987d1d5ac416a3afd9abb9662e91efa908990e180308c27a05e007
|
| 3 |
+
size 548787
|
models/vocabulary/dsb_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "dsb",
|
| 3 |
+
"vocabulary_size": 32309,
|
| 4 |
+
"statistics": {
|
| 5 |
+
"type_token_ratio": 0.17291342948830685,
|
| 6 |
+
"coverage": {
|
| 7 |
+
"top_100": 0.2721360928748627,
|
| 8 |
+
"top_1000": 0.5094544574264923,
|
| 9 |
+
"top_5000": 0.6904536774001329,
|
| 10 |
+
"top_10000": 0.7675997326806216
|
| 11 |
+
},
|
| 12 |
+
"hapax_count": 51263,
|
| 13 |
+
"hapax_ratio": 0.6133992246206863,
|
| 14 |
+
"total_documents": 3449
|
| 15 |
+
}
|
| 16 |
+
}
|
models/word_markov/dsb_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:578726324c9438985c16ae29b0fba1e4d2c95ea67256780dc13e4597c96325ed
|
| 3 |
+
size 2811261
|
models/word_markov/dsb_markov_ctx1_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 83705,
|
| 6 |
+
"total_transitions": 642857
|
| 7 |
+
}
|
models/word_markov/dsb_markov_ctx2_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d179629dada8b928138f75fd99ce884b747702d0d96c228aee1ff738dbbb6de
|
| 3 |
+
size 5734522
|
models/word_markov/dsb_markov_ctx2_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 299024,
|
| 6 |
+
"total_transitions": 639409
|
| 7 |
+
}
|
models/word_markov/dsb_markov_ctx3_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f62a7fdf01044badf4a01418e4bd019a03061f0e862761500f4315f28205b80
|
| 3 |
+
size 7943109
|
models/word_markov/dsb_markov_ctx3_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 446488,
|
| 6 |
+
"total_transitions": 635961
|
| 7 |
+
}
|
models/word_markov/dsb_markov_ctx4_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f91b66af45a3cffb2b5fee99ae80be4f5cdea8062772f9a81c0bae64d8c37eaf
|
| 3 |
+
size 9386531
|
models/word_markov/dsb_markov_ctx4_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_contexts": 514008,
|
| 6 |
+
"total_transitions": 632513
|
| 7 |
+
}
|
models/word_ngram/dsb_2gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34b924e465fb19345a7d89593c5d07248aca3fb566bc30dc4d52e8da8c70be6a
|
| 3 |
+
size 212696
|
models/word_ngram/dsb_2gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 14685,
|
| 6 |
+
"total_ngrams": 642857
|
| 7 |
+
}
|
models/word_ngram/dsb_3gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:766a87049e294fe083de9b40a25096ea9a64d30e961e2238372257f093486632
|
| 3 |
+
size 347612
|
models/word_ngram/dsb_3gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 21515,
|
| 6 |
+
"total_ngrams": 639409
|
| 7 |
+
}
|
models/word_ngram/dsb_4gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe841e8c1854ef6fc5cca0bac3bb5b6da357d93862d521abce14ee3b3cc1d28f
|
| 3 |
+
size 637664
|
models/word_ngram/dsb_4gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "dsb",
|
| 5 |
+
"unique_ngrams": 37295,
|
| 6 |
+
"total_ngrams": 635961
|
| 7 |
+
}
|
visualizations/embedding_isotropy.png
ADDED
|