omarkamali commited on
Commit
cb55618
·
verified ·
1 Parent(s): 8ec2280

Upload all models and assets for da (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +334 -155
  3. models/embeddings/aligned/da_128d.bin +3 -0
  4. models/embeddings/aligned/da_128d.meta.json +1 -0
  5. models/embeddings/aligned/da_128d.projection.npy +3 -0
  6. models/embeddings/aligned/da_128d_metadata.json +8 -0
  7. models/embeddings/aligned/da_32d.bin +3 -0
  8. models/embeddings/aligned/da_32d.meta.json +1 -0
  9. models/embeddings/aligned/da_32d.projection.npy +3 -0
  10. models/embeddings/aligned/da_32d_metadata.json +8 -0
  11. models/embeddings/aligned/da_64d.bin +3 -0
  12. models/embeddings/aligned/da_64d.meta.json +1 -0
  13. models/embeddings/aligned/da_64d.projection.npy +3 -0
  14. models/embeddings/aligned/da_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/da_128d.bin +2 -2
  16. models/embeddings/monolingual/da_128d_metadata.json +5 -3
  17. models/embeddings/monolingual/da_32d.bin +2 -2
  18. models/embeddings/monolingual/da_32d_metadata.json +5 -3
  19. models/embeddings/monolingual/da_64d.bin +2 -2
  20. models/embeddings/monolingual/da_64d_metadata.json +5 -3
  21. models/subword_markov/da_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/da_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/da_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/da_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/da_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/da_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/da_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/da_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/da_2gram_subword.parquet +2 -2
  30. models/subword_ngram/da_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/da_3gram_subword.parquet +2 -2
  32. models/subword_ngram/da_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/da_4gram_subword.parquet +2 -2
  34. models/subword_ngram/da_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/da_5gram_subword.parquet +3 -0
  36. models/subword_ngram/da_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/da_tokenizer_16k.model +2 -2
  38. models/tokenizer/da_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/da_tokenizer_32k.model +2 -2
  40. models/tokenizer/da_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/da_tokenizer_64k.model +2 -2
  42. models/tokenizer/da_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/da_tokenizer_8k.model +2 -2
  44. models/tokenizer/da_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/da_vocabulary.parquet +2 -2
  46. models/vocabulary/da_vocabulary_metadata.json +10 -9
  47. models/word_markov/da_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/da_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/da_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/da_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-germanic_north
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,14 +33,14 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.256
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.7852
30
  - name: vocabulary_size
31
  type: vocab
32
- value: 974563
33
- generated: 2025-12-29
34
  ---
35
 
36
  # Danish - Wikilangs Models
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
- - N-gram models (2, 3, 4-gram)
48
- - Markov chains (context of 1, 2, 3 and 4)
49
  - Subword N-gram and Markov chains
50
- - Embeddings in various sizes and dimensions
51
  - Language Vocabulary
52
  - Language Statistics
 
53
  ![Performance Dashboard](visualizations/performance_dashboard.png)
54
 
55
  ### Analysis and Evaluation
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
59
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
- - [6. Summary & Recommendations](#6-summary--recommendations)
 
63
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
  - [Visualizations Index](#visualizations-index)
65
 
@@ -68,73 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
68
 
69
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
 
 
 
 
 
 
 
71
  ### Results
72
 
73
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
  |------------|-------------|---------------|----------|--------------|
75
- | **8k** | 3.425x | 3.39 | 0.1175% | 1,887,939 |
76
- | **16k** | 3.744x | 3.70 | 0.1284% | 1,727,173 |
77
- | **32k** | 4.025x | 3.98 | 0.1381% | 1,606,621 |
78
- | **64k** | 4.256x 🏆 | 4.21 | 0.1460% | 1,519,331 |
79
 
80
  ### Tokenization Examples
81
 
82
  Below are sample sentences tokenized with each vocabulary size:
83
 
84
- **Sample 1:** `Se også 564 (tal)
85
-
86
- Begivenheder
87
-
88
- Født
89
-
90
- Dødsfald
91
-
92
- Eksterne henvisninger
93
-
94
- ...`
95
 
96
  | Vocab | Tokens | Count |
97
  |-------|--------|-------|
98
- | 8k | `▁seogså 5 6 4 ( tal )begivenheder ... (+7 more)` | 17 |
99
- | 16k | `▁seogså5 6 4( tal ) ▁begivenheder ... (+7 more)` | 17 |
100
- | 32k | `▁seogså5 6 4( tal ) ▁begivenheder ... (+7 more)` | 17 |
101
- | 64k | `▁seogså5 6 4( tal ) begivenheder ... (+7 more)` | 17 |
102
-
103
- **Sample 2:** `Rikuya Izutsu (født 10. februar 1994) er en japansk fodboldspiller.
104
 
105
- Referencer...`
106
 
107
  | Vocab | Tokens | Count |
108
  |-------|--------|-------|
109
- | 8k | `▁ri ku yai z ut su( født ▁ ... (+23 more)` | 33 |
110
- | 16k | `▁ri ku yai z ut su( født ▁ ... (+23 more)` | 33 |
111
- | 32k | `▁ri ku yaiz ut su( født1 ... (+22 more)` | 32 |
112
- | 64k | `▁ri ku yaiz utsu( født1 0 ... (+21 more)` | 31 |
113
-
114
- **Sample 3:** `Se også 598 (tal)
115
-
116
- Begivenheder
117
-
118
- Født
119
-
120
- Dødsfald
121
-
122
- Eksterne henvisninger
123
 
124
- ...`
125
 
126
  | Vocab | Tokens | Count |
127
  |-------|--------|-------|
128
- | 8k | `▁se ▁også5 9 8 ▁( tal ) begivenheder ... (+7 more)` | 17 |
129
- | 16k | `▁se ▁også5 9 8 ▁( tal ) begivenheder ... (+7 more)` | 17 |
130
- | 32k | `▁se ▁også5 9 8 ▁( tal ) begivenheder ... (+7 more)` | 17 |
131
- | 64k | `▁seogså5 9 8 ▁( tal ) begivenheder ... (+7 more)` | 17 |
132
 
133
 
134
  ### Key Findings
135
 
136
- - **Best Compression:** 64k achieves 4.256x compression
137
- - **Lowest UNK Rate:** 8k with 0.1175% unknown tokens
138
  - **Trade-off:** Larger vocabularies improve compression but increase model size
139
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
140
 
@@ -143,57 +139,111 @@ Below are sample sentences tokenized with each vocabulary size:
143
 
144
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
145
 
 
 
146
  ![N-gram Coverage](visualizations/ngram_coverage.png)
147
 
148
  ### Results
149
 
150
- | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
151
- |--------|------------|---------|----------------|------------------|-------------------|
152
- | **2-gram** | 147,251 🏆 | 17.17 | 1,987,899 | 9.8% | 23.4% |
153
- | **2-gram** | 347 🏆 | 8.44 | 19,771 | 62.6% | 98.3% |
154
- | **3-gram** | 860,751 | 19.72 | 4,757,337 | 4.0% | 10.6% |
155
- | **3-gram** | 3,240 | 11.66 | 192,309 | 23.7% | 65.1% |
156
- | **4-gram** | 2,463,069 | 21.23 | 8,589,777 | 2.8% | 7.0% |
157
- | **4-gram** | 20,967 | 14.36 | 1,299,708 | 11.6% | 35.0% |
 
 
158
 
159
  ### Top 5 N-grams by Size
160
 
161
- **2-grams:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
- | 1 | `kategori :` | 797,923 |
166
- | 2 | `, og` | 388,695 |
167
- | 3 | `, der` | 367,530 |
168
- | 4 | `. i` | 304,754 |
169
- | 5 | `, som` | 301,325 |
170
 
171
- **3-grams:**
172
 
173
  | Rank | N-gram | Count |
174
  |------|--------|-------|
175
- | 1 | `henvisninger kategori :` | 91,987 |
176
- | 2 | `eksterne henvisninger kategori` | 84,554 |
177
- | 3 | `danmark kategori :` | 75,266 |
178
- | 4 | `referencer eksterne henvisninger` | 69,753 |
179
- | 5 | `) er en` | 69,674 |
180
 
181
- **4-grams:**
182
 
183
  | Rank | N-gram | Count |
184
  |------|--------|-------|
185
- | 1 | `eksterne henvisninger kategori :` | 84,554 |
186
- | 2 | `fra danmark kategori :` | 64,734 |
187
- | 3 | `referencer eksterne henvisninger kategori` | 49,030 |
188
- | 4 | `kategori : fodboldspillere fra` | 42,815 |
189
- | 5 | `bl . a .` | 42,727 |
190
 
191
 
192
  ### Key Findings
193
 
194
- - **Best Perplexity:** 2-gram with 347
195
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
196
- - **Coverage:** Top-1000 patterns cover ~35% of corpus
197
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
198
 
199
  ---
@@ -201,55 +251,86 @@ Below are sample sentences tokenized with each vocabulary size:
201
 
202
  ![Markov Entropy](visualizations/markov_entropy.png)
203
 
 
 
204
  ![Markov Branching](visualizations/markov_branching.png)
205
 
206
  ### Results
207
 
208
- | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
209
- |---------|-------------|------------|------------------|-----------------|----------------|
210
- | **1** | 0.7002 | 1.625 | 8.20 | 2,503,524 | 30.0% |
211
- | **1** | 1.4386 | 2.710 | 9.82 | 7,827 | 0.0% |
212
- | **2** | 0.4144 | 1.333 | 2.67 | 20,511,480 | 58.6% |
213
- | **2** | 0.7435 | 1.674 | 5.32 | 76,803 | 25.6% |
214
- | **3** | 0.1972 | 1.146 | 1.49 | 54,702,359 | 80.3% |
215
- | **3** | 0.9118 | 1.881 | 5.38 | 408,247 | 8.8% |
216
- | **4** | 0.0910 🏆 | 1.065 | 1.18 | 81,699,919 | 90.9% |
217
- | **4** | 0.7874 🏆 | 1.726 | 3.84 | 2,194,966 | 21.3% |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
 
219
- ### Generated Text Samples
 
 
 
 
 
 
220
 
221
- Below are text samples generated from each Markov chain model:
 
 
 
 
 
 
 
222
 
223
  **Context Size 1:**
224
 
225
- 1. `. ali var således at lukke alle ved nogle indfødte var de fleste insektarter fundet sted`
226
- 2. `, fra 1979 fuldmægtig ved opførelsen af en metrostation nedenunder , men palle von gyldenskiold (`
227
- 3. `i fjendskab mellem køge bugt , som ejendommen var blevet beskrevet som har stenz . von`
228
 
229
  **Context Size 2:**
230
 
231
- 1. `kategori : arveret kategori : sovjetiske film fra 2009 kategori : museer i oslo kategori : modtagere`
232
- 2. `, og det sydlige hellas og bliver dræbt af en anden organisation , der stod udenfor eu`
233
- 3. `, der indsamler penge til sin karriere og er det dominerende træ . gunnar carlquist ( født`
234
 
235
  **Context Size 3:**
236
 
237
- 1. `henvisninger kategori : ideologier kategori : etnicitet kategori : immaterialret kategori : straffel...`
238
- 2. `eksterne henvisninger kategori : kenyas provinser`
239
- 3. `danmark kategori : fløjtenister fra danmark kategori : maskinfabrikker i danmark kategori : det dans...`
240
 
241
  **Context Size 4:**
242
 
243
- 1. `eksterne henvisninger kategori : fugle fra vestasien kategori : ræve`
244
- 2. `fra danmark kategori : personer i dansk biografisk leksikon kategori : tyskere i 1900 - tallet kateg...`
245
- 3. `referencer eksterne henvisninger kategori : elvis presley - sange kategori : singler fra 1963 katego...`
246
 
247
 
248
  ### Key Findings
249
 
250
- - **Best Predictability:** Context-4 with 90.9% predictability
251
  - **Branching Factor:** Decreases with context size (more deterministic)
252
- - **Memory Trade-off:** Larger contexts require more storage (2,194,966 contexts)
253
  - **Recommendation:** Context-3 or Context-4 for text generation
254
 
255
  ---
@@ -265,64 +346,64 @@ Below are text samples generated from each Markov chain model:
265
 
266
  | Metric | Value |
267
  |--------|-------|
268
- | Vocabulary Size | 974,563 |
269
- | Total Tokens | 94,217,021 |
270
- | Mean Frequency | 96.68 |
271
  | Median Frequency | 4 |
272
- | Frequency Std Dev | 6265.69 |
273
 
274
  ### Most Common Words
275
 
276
  | Rank | Word | Frequency |
277
  |------|------|-----------|
278
- | 1 | i | 3,414,957 |
279
- | 2 | og | 2,580,527 |
280
- | 3 | af | 1,724,110 |
281
- | 4 | en | 1,367,373 |
282
- | 5 | til | 1,141,339 |
283
- | 6 | er | 1,091,325 |
284
- | 7 | den | 1,045,804 |
285
- | 8 | at | 983,539 |
286
- | 9 | på | 952,118 |
287
- | 10 | som | 942,026 |
288
 
289
  ### Least Common Words (from vocabulary)
290
 
291
  | Rank | Word | Frequency |
292
  |------|------|-----------|
293
- | 1 | sinoefloden | 2 |
294
- | 2 | deathconsciousness | 2 |
295
- | 3 | folkedanseforeninger | 2 |
296
- | 4 | affranchi | 2 |
297
- | 5 | superfilmen | 2 |
298
- | 6 | kettletoft | 2 |
299
- | 7 | sandays | 2 |
300
- | 8 | crummack | 2 |
301
- | 9 | rousays | 2 |
302
- | 10 | 2025919140 | 2 |
303
 
304
  ### Zipf's Law Analysis
305
 
306
  | Metric | Value |
307
  |--------|-------|
308
- | Zipf Coefficient | 1.0148 |
309
- | R² (Goodness of Fit) | 0.997060 |
310
  | Adherence Quality | **excellent** |
311
 
312
  ### Coverage Analysis
313
 
314
  | Top N Words | Coverage |
315
  |-------------|----------|
316
- | Top 100 | 36.6% |
317
- | Top 1,000 | 57.4% |
318
  | Top 5,000 | 73.3% |
319
- | Top 10,000 | 79.6% |
320
 
321
  ### Key Findings
322
 
323
- - **Zipf Compliance:** R²=0.9971 indicates excellent adherence to Zipf's law
324
- - **High Frequency Dominance:** Top 100 words cover 36.6% of corpus
325
- - **Long Tail:** 964,563 words needed for remaining 20.4% coverage
326
 
327
  ---
328
  ## 5. Word Embeddings Evaluation
@@ -335,24 +416,119 @@ Below are text samples generated from each Markov chain model:
335
 
336
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
337
 
338
- ### Model Comparison
339
 
340
- | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
341
- |-------|------------|-----------|----------|----------|----------|
342
- | **mono_32d** | 679,813 | 32 | 3.066 | 0.860 | 0.7852 🏆 |
343
- | **mono_64d** | 679,813 | 64 | 3.485 | 0.868 | 0.7644 |
344
- | **mono_128d** | 679,813 | 128 | 3.895 | 0.896 | 0.7063 |
345
- | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
 
 
 
 
 
 
 
 
 
 
 
346
 
347
  ### Key Findings
348
 
349
- - **Best Isotropy:** mono_32d with 0.7852 (more uniform distribution)
350
- - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
351
- - **Vocabulary Coverage:** All models cover 679,813 words
352
- - **Recommendation:** 100d for balanced semantic capture and efficiency
353
 
354
  ---
355
- ## 6. Summary & Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356
 
357
  ![Performance Dashboard](visualizations/performance_dashboard.png)
358
 
@@ -360,11 +536,12 @@ Below are text samples generated from each Markov chain model:
360
 
361
  | Component | Recommended | Rationale |
362
  |-----------|-------------|-----------|
363
- | Tokenizer | **32k BPE** | Best compression (4.26x) with low UNK rate |
364
- | N-gram | **5-gram** | Lowest perplexity (347) |
365
- | Markov | **Context-4** | Highest predictability (90.9%) |
366
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
367
 
 
368
  ---
369
  ## Appendix: Metrics Glossary & Interpretation Guide
370
 
@@ -554,7 +731,8 @@ If you use these models in your research, please cite:
554
  author = {Kamali, Omar},
555
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
556
  year = {2025},
557
- publisher = {HuggingFace},
 
558
  url = {https://huggingface.co/wikilangs}
559
  institution = {Omneity Labs}
560
  }
@@ -570,7 +748,8 @@ MIT License - Free for academic and commercial use.
570
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
571
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
572
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
 
573
  ---
574
  *Generated by Wikilangs Models Pipeline*
575
 
576
- *Report Date: 2025-12-29 09:01:56*
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-germanic_north
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.557
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.7924
40
  - name: vocabulary_size
41
  type: vocab
42
+ value: 0
43
+ generated: 2026-01-08
44
  ---
45
 
46
  # Danish - Wikilangs Models
 
54
  ### Models & Assets
55
 
56
  - Tokenizers (8k, 16k, 32k, 64k)
57
+ - N-gram models (2, 3, 4, 5-gram)
58
+ - Markov chains (context of 1, 2, 3, 4 and 5)
59
  - Subword N-gram and Markov chains
60
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
61
  - Language Vocabulary
62
  - Language Statistics
63
+
64
  ![Performance Dashboard](visualizations/performance_dashboard.png)
65
 
66
  ### Analysis and Evaluation
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
+ - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
77
 
 
80
 
81
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
82
 
83
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
84
+
85
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
86
+
87
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
88
+
89
  ### Results
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.590x | 3.59 | 0.1227% | 1,644,330 |
94
+ | **16k** | 3.953x | 3.95 | 0.1351% | 1,493,346 |
95
+ | **32k** | 4.286x | 4.29 | 0.1465% | 1,377,449 |
96
+ | **64k** | 4.557x 🏆 | 4.56 | 0.1558% | 1,295,305 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Ole Bornemann henviser til: Oluf Bornemann – dansk-norsk biskop Ole Bornemann (r...`
 
 
 
 
 
 
 
 
 
 
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁olebor nem ann ▁henvisertil : ▁olufbor nem ... (+27 more)` | 37 |
107
+ | 16k | `▁olebor nemann henviser ▁til : ▁olufbor nemann ▁– ... (+21 more)` | 31 |
108
+ | 32k | `▁olebor nemann henviser ▁til : ▁olufbor nemann ▁– ... (+20 more)` | 30 |
109
+ | 64k | `▁olebornemannhenviser ▁til : ▁olufbornemann ▁–dansk - ... (+16 more)` | 26 |
 
 
110
 
111
+ **Sample 2:** `18. April er en dansk dokumentarfilm fra instrueret af Poul Meyer. Eksterne henv...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁ 1 8 . april ▁er ▁en ▁danskdokumentarfilmfra ... (+11 more)` | 21 |
116
+ | 16k | `▁ 1 8 . april ▁er ▁en ▁danskdokumentarfilmfra ... (+11 more)` | 21 |
117
+ | 32k | `▁ 1 8 . april ▁er ▁endansk ▁dokumentarfilmfra ... (+11 more)` | 21 |
118
+ | 64k | `▁ 1 8 . april ▁eren ▁danskdokumentarfilm ▁fra ... (+11 more)` | 21 |
 
 
 
 
 
 
 
 
 
 
119
 
120
+ **Sample 3:** `Takeshi Watanabe (født 10. september er en japansk fodboldspiller. Japans fodbol...`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁tak es hi wat an ab e ▁( født ▁ ... (+12 more)` | 22 |
125
+ | 16k | `▁tak es hi wat an abe ▁( født1 ... (+11 more)` | 21 |
126
+ | 32k | `▁takes hiwat an abe ▁( født1 0 ... (+10 more)` | 20 |
127
+ | 64k | `▁takes hi watanabe( født 1 0 .september ... (+8 more)` | 18 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.557x compression
133
+ - **Lowest UNK Rate:** 8k with 0.1227% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
139
 
140
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
141
 
142
+ ![N-gram Unique](visualizations/ngram_unique.png)
143
+
144
  ![N-gram Coverage](visualizations/ngram_coverage.png)
145
 
146
  ### Results
147
 
148
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 205,179 | 17.65 | 1,697,331 | 7.2% | 18.6% |
151
+ | **2-gram** | Subword | 291 🏆 | 8.19 | 16,676 | 66.5% | 99.0% |
152
+ | **3-gram** | Word | 930,238 | 19.83 | 3,294,874 | 2.7% | 7.8% |
153
+ | **3-gram** | Subword | 2,629 | 11.36 | 143,880 | 25.6% | 68.8% |
154
+ | **4-gram** | Word | 2,232,256 | 21.09 | 5,289,799 | 1.9% | 5.1% |
155
+ | **4-gram** | Subword | 16,827 | 14.04 | 898,389 | 12.2% | 36.9% |
156
+ | **5-gram** | Word | 1,710,284 | 20.71 | 3,467,271 | 1.9% | 5.4% |
157
+ | **5-gram** | Subword | 78,315 | 16.26 | 3,371,746 | 6.1% | 20.8% |
158
 
159
  ### Top 5 N-grams by Size
160
 
161
+ **2-grams (Word):**
162
+
163
+ | Rank | N-gram | Count |
164
+ |------|--------|-------|
165
+ | 1 | `er en` | 214,430 |
166
+ | 2 | `eksterne henvisninger` | 158,401 |
167
+ | 3 | `til at` | 148,332 |
168
+ | 4 | `for at` | 127,680 |
169
+ | 5 | `i den` | 98,315 |
170
+
171
+ **3-grams (Word):**
172
+
173
+ | Rank | N-gram | Count |
174
+ |------|--------|-------|
175
+ | 1 | `referencer eksterne henvisninger` | 69,492 |
176
+ | 2 | `eksterne henvisninger fra` | 52,148 |
177
+ | 3 | `en del af` | 36,449 |
178
+ | 4 | `fra danmark fra` | 31,038 |
179
+ | 5 | `på grund af` | 24,747 |
180
+
181
+ **4-grams (Word):**
182
+
183
+ | Rank | N-gram | Count |
184
+ |------|--------|-------|
185
+ | 1 | `referencer eksterne henvisninger fra` | 31,041 |
186
+ | 2 | `fra danmark fra danmark` | 18,040 |
187
+ | 3 | `eksterne henvisninger fra danmark` | 13,653 |
188
+ | 4 | `eksterne henvisninger fra usa` | 10,607 |
189
+ | 5 | `eksterne henvisninger film fra` | 8,857 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `referencer eksterne henvisninger fra danmark` | 8,198 |
196
+ | 2 | `referencer eksterne henvisninger fra usa` | 7,710 |
197
+ | 3 | `referencer eksterne henvisninger film fra` | 6,839 |
198
+ | 4 | `fra danmark fra danmark fra` | 6,792 |
199
+ | 5 | `eksterne henvisninger film fra fra` | 6,671 |
200
+
201
+ **2-grams (Subword):**
202
+
203
+ | Rank | N-gram | Count |
204
+ |------|--------|-------|
205
+ | 1 | `e r` | 14,686,017 |
206
+ | 2 | `e _` | 12,413,595 |
207
+ | 3 | `e n` | 11,692,715 |
208
+ | 4 | `d e` | 11,106,628 |
209
+ | 5 | `r _` | 9,958,657 |
210
+
211
+ **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `e r _` | 6,591,787 |
216
+ | 2 | `e n _` | 5,761,673 |
217
+ | 3 | `_ d e` | 4,088,356 |
218
+ | 4 | `e t _` | 3,830,236 |
219
+ | 5 | `_ i _` | 3,324,144 |
220
 
221
+ **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `_ o g _` | 2,559,398 |
226
+ | 2 | `_ f o r` | 1,851,842 |
227
+ | 3 | `_ a f _` | 1,698,296 |
228
+ | 4 | `d e n _` | 1,598,615 |
229
+ | 5 | `_ t i l` | 1,395,426 |
230
 
231
+ **5-grams (Subword):**
232
 
233
  | Rank | N-gram | Count |
234
  |------|--------|-------|
235
+ | 1 | `_ t i l _` | 1,111,382 |
236
+ | 2 | `_ d e n _` | 1,013,475 |
237
+ | 3 | `_ s o m _` | 926,452 |
238
+ | 4 | `_ f r a _` | 883,398 |
239
+ | 5 | `_ f o r _` | 860,091 |
240
 
241
 
242
  ### Key Findings
243
 
244
+ - **Best Perplexity:** 2-gram (subword) with 291
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~21% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
251
 
252
  ![Markov Entropy](visualizations/markov_entropy.png)
253
 
254
+ ![Markov Contexts](visualizations/markov_contexts.png)
255
+
256
  ![Markov Branching](visualizations/markov_branching.png)
257
 
258
  ### Results
259
 
260
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.9282 | 1.903 | 11.03 | 2,011,765 | 7.2% |
263
+ | **1** | Subword | 1.1734 | 2.255 | 7.58 | 8,958 | 0.0% |
264
+ | **2** | Word | 0.3698 | 1.292 | 2.34 | 22,156,805 | 63.0% |
265
+ | **2** | Subword | 0.6816 | 1.604 | 4.74 | 67,792 | 31.8% |
266
+ | **3** | Word | 0.1562 | 1.114 | 1.36 | 51,659,329 | 84.4% |
267
+ | **3** | Subword | 0.7837 | 1.722 | 4.70 | 321,234 | 21.6% |
268
+ | **4** | Word | 0.0627 🏆 | 1.044 | 1.11 | 69,884,622 | 93.7% |
269
+ | **4** | Subword | 0.7511 | 1.683 | 3.88 | 1,508,279 | 24.9% |
270
+
271
+ ### Generated Text Samples (Word-based)
272
+
273
+ Below are text samples generated from each word-based Markov chain model:
274
+
275
+ **Context Size 1:**
276
+
277
+ 1. `i sverige bernadotte en tidligere premierminister vladimír vašíček tjekkisk eller med langt de flest...`
278
+ 2. `og kortlagte dertil uhensigtsmæssige reaktionsmønstre på denne slags rum som et individuelt hold fra...`
279
+ 3. `af det eneste gang i lælehe lunden og shimonoseki afstod unionen og sydlige ishav og egyptiske`
280
+
281
+ **Context Size 2:**
282
+
283
+ 1. `er en aristokrat fra oneglia på en figur på fordi de manglede stadig konkrete beviser det objekts`
284
+ 2. `eksterne henvisninger fra nederlandene fra flandern og champagne fra reims til danmark og derpaa ble...`
285
+ 3. `til at åbne sine egne retoriske færdigheder selvom de ikke mangler det umiddelbares friskhed inspira...`
286
 
287
+ **Context Size 3:**
288
+
289
+ 1. `referencer eksterne henvisninger 05 i vejle i alt var omkring 100 000 lysår og en tykkelse af cirka`
290
+ 2. `eksterne henvisninger fra mozambique fra maputo ved sommer ol mestre fra usa sølvmedaljevindere fra ...`
291
+ 3. `en del af moskenes kommune i nordland fylke i norge med et underskud på godt én million kroner`
292
+
293
+ **Context Size 4:**
294
 
295
+ 1. `referencer eksterne henvisninger fra storbritannien medaljevindere i gymnastik mestre fra grækenland...`
296
+ 2. `fra danmark fra danmark af videnskabernes selskab i dansk biografisk leksikon fra danmark thomas 1 f...`
297
+ 3. `eksterne henvisninger fra danmark film fra fra nordisk film dramafilm fra danmark instrueret af augu...`
298
+
299
+
300
+ ### Generated Text Samples (Subword-based)
301
+
302
+ Below are text samples generated from each subword-based Markov chain model:
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_het_i_ldshic._k`
307
+ 2. `enoge_der_8.a_t.`
308
+ 3. `rerliolin,_opon_`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `er_ers_kum._ten_e`
313
+ 2. `e_asterdyra_et_fo`
314
+ 3. `en_i_kitler_være_`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `er_randsbog_blev_p`
319
+ 2. `en_i_han_ver_guldv`
320
+ 3. `_det_af_daktat_og_`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `_og_kristia_schlesw`
325
+ 2. `_forfattish_music_d`
326
+ 3. `_af_storia_italiste`
327
 
328
 
329
  ### Key Findings
330
 
331
+ - **Best Predictability:** Context-4 (word) with 93.7% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (1,508,279 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 885,946 |
350
+ | Total Tokens | 86,775,295 |
351
+ | Mean Frequency | 97.95 |
352
  | Median Frequency | 4 |
353
+ | Frequency Std Dev | 6460.78 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | i | 3,396,891 |
360
+ | 2 | og | 2,568,581 |
361
+ | 3 | af | 1,716,528 |
362
+ | 4 | en | 1,361,402 |
363
+ | 5 | til | 1,134,702 |
364
+ | 6 | er | 1,086,363 |
365
+ | 7 | den | 1,040,601 |
366
+ | 8 | at | 980,457 |
367
+ | 9 | på | 948,450 |
368
+ | 10 | som | 939,070 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
372
  | Rank | Word | Frequency |
373
  |------|------|-----------|
374
+ | 1 | elektronikinteresserede | 2 |
375
+ | 2 | sinoefloden | 2 |
376
+ | 3 | deathconsciousness | 2 |
377
+ | 4 | folkedanseforeninger | 2 |
378
+ | 5 | affranchi | 2 |
379
+ | 6 | superfilmen | 2 |
380
+ | 7 | kettletoft | 2 |
381
+ | 8 | sandays | 2 |
382
+ | 9 | crummack | 2 |
383
+ | 10 | rousays | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 1.0001 |
390
+ | R² (Goodness of Fit) | 0.998027 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 38.2% |
398
+ | Top 1,000 | 58.1% |
399
  | Top 5,000 | 73.3% |
400
+ | Top 10,000 | 79.5% |
401
 
402
  ### Key Findings
403
 
404
+ - **Zipf Compliance:** R²=0.9980 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 38.2% of corpus
406
+ - **Long Tail:** 875,946 words needed for remaining 20.5% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
416
 
417
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
418
 
 
419
 
420
+ ### 5.1 Cross-Lingual Alignment
421
+
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
+
426
+
427
+ ### 5.2 Model Comparison
428
+
429
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
+ |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.7924 🏆 | 0.3816 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.7720 | 0.3058 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.7142 | 0.2314 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.7924 | 0.3910 | 0.4140 | 0.7940 |
435
+ | **aligned_64d** | 64 | 0.7720 | 0.3076 | 0.6360 | 0.9000 |
436
+ | **aligned_128d** | 128 | 0.7142 | 0.2447 | 0.7560 | 0.9480 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_32d with 0.7924 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.3104. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 75.6% R@1 in cross-lingual retrieval.
443
+ - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
+ ## 6. Morphological Analysis (Experimental)
447
+
448
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
+
450
+ ### 6.1 Productivity & Complexity
451
+
452
+ | Metric | Value | Interpretation | Recommendation |
453
+ |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **-0.739** | Low formulaic content | - |
456
+
457
+ ### 6.2 Affix Inventory (Productive Units)
458
+
459
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
460
+
461
+ #### Productive Prefixes
462
+ | Prefix | Examples |
463
+ |--------|----------|
464
+
465
+ #### Productive Suffixes
466
+ | Suffix | Examples |
467
+ |--------|----------|
468
+ | `-e` | uforfalskede, ledocarpaceae, hærgende |
469
+ | `-n` | fjerntogsperron, flexlinjen, industriudstillingen |
470
+ | `-s` | bialiks, epicurus, ratios |
471
+ | `-r` | bredevandsbakker, provinshertugdømmer, linseskyer |
472
+ | `-er` | bredevandsbakker, provinshertugdømmer, linseskyer |
473
+ | `-en` | flexlinjen, industriudstillingen, jordbundslæren |
474
+ | `-et` | affrikeret, polyarkiet, panserkorpset |
475
+ | `-ne` | heatene, beslutningsevne, skillingsviserne |
476
+
477
+ ### 6.3 Bound Stems (Lexical Roots)
478
+
479
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
480
+
481
+ | Stem | Cohesion | Substitutability | Examples |
482
+ |------|----------|------------------|----------|
483
+ | `irke` | 2.09x | 181 contexts | birke, virke, dirke |
484
+ | `elig` | 1.65x | 256 contexts | helig, selig, zelig |
485
+ | `embe` | 2.00x | 89 contexts | tembe, rembe, embed |
486
+ | `nger` | 1.45x | 439 contexts | inger, enger, anger |
487
+ | `tisk` | 1.73x | 152 contexts | tiske, etisk, tiski |
488
+ | `ndel` | 1.42x | 393 contexts | andel, endel, ndele |
489
+ | `mber` | 1.52x | 264 contexts | imber, amber, ember |
490
+ | `nmar` | 1.77x | 85 contexts | anmary, enmark, donmar |
491
+ | `lsen` | 1.52x | 174 contexts | elsen, ólsen, olsen |
492
+ | `rste` | 1.33x | 307 contexts | erste, første, fyrste |
493
+ | `rden` | 1.38x | 227 contexts | erden, urden, arden |
494
+ | `oner` | 1.34x | 260 contexts | zoner, joner, loner |
495
+
496
+ ### 6.4 Affix Compatibility (Co-occurrence)
497
+
498
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
499
+
500
+ *No significant affix co-occurrences detected.*
501
+
502
+
503
+ ### 6.5 Recursive Morpheme Segmentation
504
+
505
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
506
+
507
+ | Word | Suggested Split | Confidence | Stem |
508
+ |------|-----------------|------------|------|
509
+ | profeterne | **`prof-et-er-ne`** | 7.5 | `prof` |
510
+ | regierende | **`regi-er-en-de`** | 7.5 | `regi` |
511
+ | kunstkritikeres | **`kunstkritik-er-es`** | 6.0 | `kunstkritik` |
512
+ | buccaneer | **`bucca-ne-er`** | 6.0 | `bucca` |
513
+ | udvikleres | **`udvikl-er-es`** | 6.0 | `udvikl` |
514
+ | håndredskaberne | **`håndredskab-er-ne`** | 6.0 | `håndredskab` |
515
+ | bolværkerne | **`bolværk-er-ne`** | 6.0 | `bolværk` |
516
+ | autogenereret | **`autog-en-er-er-et`** | 6.0 | `autog` |
517
+ | fællesgraven | **`fællesgrav-en`** | 4.5 | `fællesgrav` |
518
+ | feltflyvepladser | **`feltflyveplads-er`** | 4.5 | `feltflyveplads` |
519
+ | sangtrioen | **`sangtrio-en`** | 4.5 | `sangtrio` |
520
+ | teknologiparken | **`teknologipark-en`** | 4.5 | `teknologipark` |
521
+ | finnmarken | **`finnmark-en`** | 4.5 | `finnmark` |
522
+ | patriarker | **`patriark-er`** | 4.5 | `patriark` |
523
+ | synonymordbogen | **`synonymordbog-en`** | 4.5 | `synonymordbog` |
524
+
525
+ ### 6.6 Linguistic Interpretation
526
+
527
+ > **Automated Insight:**
528
+ The language Danish shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
529
+
530
+ ---
531
+ ## 7. Summary & Recommendations
532
 
533
  ![Performance Dashboard](visualizations/performance_dashboard.png)
534
 
 
536
 
537
  | Component | Recommended | Rationale |
538
  |-----------|-------------|-----------|
539
+ | Tokenizer | **64k BPE** | Best compression (4.56x) |
540
+ | N-gram | **2-gram** | Lowest perplexity (291) |
541
+ | Markov | **Context-4** | Highest predictability (93.7%) |
542
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
543
 
544
+
545
  ---
546
  ## Appendix: Metrics Glossary & Interpretation Guide
547
 
 
731
  author = {Kamali, Omar},
732
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
733
  year = {2025},
734
+ doi = {10.5281/zenodo.18073153},
735
+ publisher = {Zenodo},
736
  url = {https://huggingface.co/wikilangs}
737
  institution = {Omneity Labs}
738
  }
 
748
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
749
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
750
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
751
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
752
  ---
753
  *Generated by Wikilangs Models Pipeline*
754
 
755
+ *Report Date: 2026-01-08 09:40:43*
models/embeddings/aligned/da_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ddba4319b9c61ec922776d5b343a9cbea1227c8c0767cf44417e5423ef9a9d
3
+ size 1688091050
models/embeddings/aligned/da_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "da", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/da_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e960c2d1b89a6939207abf9f7febbf74e2003b55bd6f7adc3aecb53cf800ac82
3
+ size 65664
models/embeddings/aligned/da_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "da",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 190290,
7
+ "vocab_size": 636667
8
+ }
models/embeddings/aligned/da_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988238892948f6febe998defae727df9b27ef13ad654566c2592db6e855c50e0
3
+ size 431130794
models/embeddings/aligned/da_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "da", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/da_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4723793b1c4d686f28210200dba84730468f082b6ec836d2a334c3ae54e18fe
3
+ size 4224
models/embeddings/aligned/da_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "da",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 190290,
7
+ "vocab_size": 636667
8
+ }
models/embeddings/aligned/da_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc55665d9ef21bcf1bf7a7066f940953c4109b2066b330a89a85d89a420f561
3
+ size 850117546
models/embeddings/aligned/da_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "da", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/da_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9d144744dc4881b4e914e7dd36389eaa37118c43fd10a5dd6086f60d2700be0
3
+ size 16512
models/embeddings/aligned/da_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "da",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 190290,
7
+ "vocab_size": 636667
8
+ }
models/embeddings/monolingual/da_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68c3acea0b3acc83f64903aac63268a5886819a3724537b20264e8742bbe0389
3
- size 1733202257
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ddba4319b9c61ec922776d5b343a9cbea1227c8c0767cf44417e5423ef9a9d
3
+ size 1688091050
models/embeddings/monolingual/da_128d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 128,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 679813
13
  }
 
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128
13
  },
14
+ "vocab_size": 636667
15
  }
models/embeddings/monolingual/da_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:de1aa27bfa4123e9f8a42dedeb8f7bc963d4dce71c567da730cd9d71333333e2
3
- size 443105873
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988238892948f6febe998defae727df9b27ef13ad654566c2592db6e855c50e0
3
+ size 431130794
models/embeddings/monolingual/da_32d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 32,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 679813
13
  }
 
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32
13
  },
14
+ "vocab_size": 636667
15
  }
models/embeddings/monolingual/da_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:465fb7807ee1c1b7cc0cbc92c8b94765964d007aaca0e89095d66ba847a12af5
3
- size 873138001
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc55665d9ef21bcf1bf7a7066f940953c4109b2066b330a89a85d89a420f561
3
+ size 850117546
models/embeddings/monolingual/da_64d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 64,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 679813
13
  }
 
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64
13
  },
14
+ "vocab_size": 636667
15
  }
models/subword_markov/da_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:36e2282c95edc33f735242830727d3cb38b457f0d60410f8fc958ae54a853cee
3
- size 501415
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a77f7bbbed8bb0a1b7ca11c531f2eee1c420a32a038d5bf767d0f10d93792553
3
+ size 472603
models/subword_markov/da_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_contexts": 7827,
6
- "total_transitions": 630161089
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_contexts": 8958,
6
+ "total_transitions": 567528445
7
  }
models/subword_markov/da_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f3e3b34698c83d39fb848b9ed450e9d333640fb38b7af701911a7bf5b6c4470
3
- size 3244857
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e021439972f73ee932e292c346b43df0b703b3962578d83df42a1d52b05ad8
3
+ size 2695498
models/subword_markov/da_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_contexts": 76803,
6
- "total_transitions": 629849363
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_contexts": 67792,
6
+ "total_transitions": 567217531
7
  }
models/subword_markov/da_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c1a5503d267e8fad2c6f3d8d57b043b8b39f15768b2399cf0cf521aba952aa5d
3
- size 16479657
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b242be7ec2b5a684749ddaa6ebad236c5e339177310a6202976c8283f1acb95
3
+ size 12404724
models/subword_markov/da_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_contexts": 408247,
6
- "total_transitions": 629537637
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_contexts": 321234,
6
+ "total_transitions": 566906617
7
  }
models/subword_markov/da_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07015bd1fa896217f9ece588bbcfab316cebe27c1f5353d7bd0afb2b0f4effb4
3
- size 64259074
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e3286db99aec5d2b702be54d85f0a66d05ce5fc24b6fa20ff723b07e868835
3
+ size 45985973
models/subword_markov/da_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_contexts": 2194966,
6
- "total_transitions": 629225911
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_contexts": 1508279,
6
+ "total_transitions": 566595703
7
  }
models/subword_ngram/da_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8ca2619f57b1ac7bbefcabc250a3418b8e0a026afbf506eb2d9ec32d51d4dc8
3
- size 273435
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd36bc8cbd9bf04043fe587c2e91b0166f2f902ab648df930bf75a9be95bcc8e
3
+ size 232894
models/subword_ngram/da_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_ngrams": 19771,
6
- "total_ngrams": 630161089
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_ngrams": 16676,
6
+ "total_ngrams": 567528445
7
  }
models/subword_ngram/da_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14e01ea2fde43d22f7708e4abd070d10512956496ee36e85a20a8a92ce15358f
3
- size 2327975
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:106a616b5c1b46994fe3713bf07964e194dc7024d1343aa576e1f55ffee5566c
3
+ size 1806805
models/subword_ngram/da_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_ngrams": 192309,
6
- "total_ngrams": 629849363
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_ngrams": 143880,
6
+ "total_ngrams": 567217531
7
  }
models/subword_ngram/da_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13389e44c39a59c594db7e4f570fdfddecb9c53507210fcd712e5a2e80816e26
3
- size 15313345
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ad24dc194e28d56de6bd6b6752b313f4078f256958653b23bfcaf4f18384a6
3
+ size 10697338
models/subword_ngram/da_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "da",
5
- "unique_ngrams": 1299708,
6
- "total_ngrams": 629537637
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "da",
5
+ "unique_ngrams": 898389,
6
+ "total_ngrams": 566906617
7
  }
models/subword_ngram/da_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4c69c03af9234e68acd0c9634d7d828649f0dbb28f5225828f05240edb0b01a
3
+ size 40665412
models/subword_ngram/da_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "da",
5
+ "unique_ngrams": 3371746,
6
+ "total_ngrams": 566595703
7
+ }
models/tokenizer/da_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5257f8c08d312560577f764125bf86dee3ad20060303d5d179efc751e6926aaa
3
- size 509881
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c8bf9b62ee8ed799c0d6e5bebc50005a083cc2be10b93cd181bd4a4436bd9f
3
+ size 510050
models/tokenizer/da_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/da_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72f637e73e0c17b40cdde4b080377b234f3d7ddb88a0836e27d0124aec823468
3
- size 792817
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:324d7d968f80c82e64fdbdac1d11337ffbd42016efa24bdc474f7c51a18f0d34
3
+ size 793243
models/tokenizer/da_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/da_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f34a8719a8206abf56c31b11ccd067be63136835dddf9ee6648468ac9b749ed
3
- size 1376877
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09328d0a93713ba20c7759335de10e464b5b3fbba78c63e9902797a21f2e0c25
3
+ size 1376208
models/tokenizer/da_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/da_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a9341fa8df03ff9f7d47d5875e47073097d21830ea7a2b2b07ddda14141fb9e
3
- size 372662
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0548659fdbbe7d6f4691b828e7ac15b89cfdc9c2b7b45ce559d3fa9f991cc1ad
3
+ size 372983
models/tokenizer/da_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/da_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b5eaf29d24437f2bdfcf35e6f6e0f105f1b298b3da7b0c1e2899592ab05ed482
3
- size 15264314
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33214b86b6b63aa31bc1355ba9be1ff25be7945088ca5b0916ab22f1725454af
3
+ size 13968436
models/vocabulary/da_vocabulary_metadata.json CHANGED
@@ -1,16 +1,17 @@
1
  {
2
  "language": "da",
3
- "vocabulary_size": 974563,
 
4
  "statistics": {
5
- "type_token_ratio": 0.02614497849971959,
6
  "coverage": {
7
- "top_100": 0.36016111340236506,
8
- "top_1000": 0.5648239365833638,
9
- "top_5000": 0.7214206987908641,
10
- "top_10000": 0.7832362713874816
11
  },
12
- "hapax_count": 1528707,
13
- "hapax_ratio": 0.6106840252949143,
14
- "total_documents": 311726
15
  }
16
  }
 
1
  {
2
  "language": "da",
3
+ "vocabulary_size": 885946,
4
+ "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.022906069788993663,
7
  "coverage": {
8
+ "top_100": 0.3767927431893056,
9
+ "top_1000": 0.5733930744322329,
10
+ "top_5000": 0.7236143220735781,
11
+ "top_10000": 0.7852248444527253
12
  },
13
+ "hapax_count": 1127563,
14
+ "hapax_ratio": 0.5599989868433665,
15
+ "total_documents": 310914
16
  }
17
  }
models/word_markov/da_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd504f360cbe5a90b1c7b013522b8db902e17e2e16ba3ba9c36f60150cd26922
3
- size 194239107
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c576188f3cd603eafa88b134c0d4863d36f5b6e3fd8ed58400bcdb5359e10454
3
+ size 203010577
models/word_markov/da_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "da",
5
- "unique_contexts": 2503524,
6
- "total_transitions": 118622822
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "da",
5
+ "unique_contexts": 2011765,
6
+ "total_transitions": 87591944
7
  }
models/word_markov/da_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:594706495f332b8802a7647db03b3acd0fc22282c1fbc02ec68f34b4f84095d8
3
- size 631690789
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:695681b3d74d7d99c09b4665ac5ada28f4f214399b9a8185ef678510f9d563bd
3
+ size 638125991
models/word_markov/da_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "da",
5
- "unique_contexts": 20511480,
6
- "total_transitions": 118311096
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "da",
5
+ "unique_contexts": 22156805,
6
+ "total_transitions": 87281030
7
  }