Upload all models and assets for da (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +334 -155
- models/embeddings/aligned/da_128d.bin +3 -0
- models/embeddings/aligned/da_128d.meta.json +1 -0
- models/embeddings/aligned/da_128d.projection.npy +3 -0
- models/embeddings/aligned/da_128d_metadata.json +8 -0
- models/embeddings/aligned/da_32d.bin +3 -0
- models/embeddings/aligned/da_32d.meta.json +1 -0
- models/embeddings/aligned/da_32d.projection.npy +3 -0
- models/embeddings/aligned/da_32d_metadata.json +8 -0
- models/embeddings/aligned/da_64d.bin +3 -0
- models/embeddings/aligned/da_64d.meta.json +1 -0
- models/embeddings/aligned/da_64d.projection.npy +3 -0
- models/embeddings/aligned/da_64d_metadata.json +8 -0
- models/embeddings/monolingual/da_128d.bin +2 -2
- models/embeddings/monolingual/da_128d_metadata.json +5 -3
- models/embeddings/monolingual/da_32d.bin +2 -2
- models/embeddings/monolingual/da_32d_metadata.json +5 -3
- models/embeddings/monolingual/da_64d.bin +2 -2
- models/embeddings/monolingual/da_64d_metadata.json +5 -3
- models/subword_markov/da_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/da_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/da_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/da_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/da_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/da_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/da_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/da_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/da_2gram_subword.parquet +2 -2
- models/subword_ngram/da_2gram_subword_metadata.json +2 -2
- models/subword_ngram/da_3gram_subword.parquet +2 -2
- models/subword_ngram/da_3gram_subword_metadata.json +2 -2
- models/subword_ngram/da_4gram_subword.parquet +2 -2
- models/subword_ngram/da_4gram_subword_metadata.json +2 -2
- models/subword_ngram/da_5gram_subword.parquet +3 -0
- models/subword_ngram/da_5gram_subword_metadata.json +7 -0
- models/tokenizer/da_tokenizer_16k.model +2 -2
- models/tokenizer/da_tokenizer_16k.vocab +0 -0
- models/tokenizer/da_tokenizer_32k.model +2 -2
- models/tokenizer/da_tokenizer_32k.vocab +0 -0
- models/tokenizer/da_tokenizer_64k.model +2 -2
- models/tokenizer/da_tokenizer_64k.vocab +0 -0
- models/tokenizer/da_tokenizer_8k.model +2 -2
- models/tokenizer/da_tokenizer_8k.vocab +0 -0
- models/vocabulary/da_vocabulary.parquet +2 -2
- models/vocabulary/da_vocabulary_metadata.json +10 -9
- models/word_markov/da_markov_ctx1_word.parquet +2 -2
- models/word_markov/da_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/da_markov_ctx2_word.parquet +2 -2
- models/word_markov/da_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-germanic_north
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,14 +33,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# Danish - Wikilangs Models
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,73 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** | 4.
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
-
|
| 86 |
-
Begivenheder
|
| 87 |
-
|
| 88 |
-
Født
|
| 89 |
-
|
| 90 |
-
Dødsfald
|
| 91 |
-
|
| 92 |
-
Eksterne henvisninger
|
| 93 |
-
|
| 94 |
-
...`
|
| 95 |
|
| 96 |
| Vocab | Tokens | Count |
|
| 97 |
|-------|--------|-------|
|
| 98 |
-
| 8k | `▁
|
| 99 |
-
| 16k | `▁
|
| 100 |
-
| 32k | `▁
|
| 101 |
-
| 64k | `▁
|
| 102 |
-
|
| 103 |
-
**Sample 2:** `Rikuya Izutsu (født 10. februar 1994) er en japansk fodboldspiller.
|
| 104 |
|
| 105 |
-
|
| 106 |
|
| 107 |
| Vocab | Tokens | Count |
|
| 108 |
|-------|--------|-------|
|
| 109 |
-
| 8k | `▁
|
| 110 |
-
| 16k | `▁
|
| 111 |
-
| 32k | `▁
|
| 112 |
-
| 64k | `▁
|
| 113 |
-
|
| 114 |
-
**Sample 3:** `Se også 598 (tal)
|
| 115 |
-
|
| 116 |
-
Begivenheder
|
| 117 |
-
|
| 118 |
-
Født
|
| 119 |
-
|
| 120 |
-
Dødsfald
|
| 121 |
-
|
| 122 |
-
Eksterne henvisninger
|
| 123 |
|
| 124 |
-
...`
|
| 125 |
|
| 126 |
| Vocab | Tokens | Count |
|
| 127 |
|-------|--------|-------|
|
| 128 |
-
| 8k | `▁
|
| 129 |
-
| 16k | `▁
|
| 130 |
-
| 32k | `▁
|
| 131 |
-
| 64k | `▁
|
| 132 |
|
| 133 |
|
| 134 |
### Key Findings
|
| 135 |
|
| 136 |
-
- **Best Compression:** 64k achieves 4.
|
| 137 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 138 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 139 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 140 |
|
|
@@ -143,57 +139,111 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 143 |
|
| 144 |

|
| 145 |
|
|
|
|
|
|
|
| 146 |

|
| 147 |
|
| 148 |
### Results
|
| 149 |
|
| 150 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 151 |
-
|
| 152 |
-
| **2-gram** |
|
| 153 |
-
| **2-gram** |
|
| 154 |
-
| **3-gram** |
|
| 155 |
-
| **3-gram** |
|
| 156 |
-
| **4-gram** | 2,
|
| 157 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
-
| 1 | `
|
| 166 |
-
| 2 |
|
| 167 |
-
| 3 |
|
| 168 |
-
| 4 |
|
| 169 |
-
| 5 |
|
| 170 |
|
| 171 |
-
**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
-
| 1 | `
|
| 176 |
-
| 2 | `
|
| 177 |
-
| 3 | `
|
| 178 |
-
| 4 | `
|
| 179 |
-
| 5 | `
|
| 180 |
|
| 181 |
-
**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
-
| 1 | `
|
| 186 |
-
| 2 | `
|
| 187 |
-
| 3 | `
|
| 188 |
-
| 4 | `
|
| 189 |
-
| 5 | `
|
| 190 |
|
| 191 |
|
| 192 |
### Key Findings
|
| 193 |
|
| 194 |
-
- **Best Perplexity:** 2-gram with
|
| 195 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 196 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 197 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 198 |
|
| 199 |
---
|
|
@@ -201,55 +251,86 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 201 |
|
| 202 |

|
| 203 |
|
|
|
|
|
|
|
| 204 |

|
| 205 |
|
| 206 |
### Results
|
| 207 |
|
| 208 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 209 |
-
|
| 210 |
-
| **1** | 0.
|
| 211 |
-
| **1** | 1.
|
| 212 |
-
| **2** | 0.
|
| 213 |
-
| **2** | 0.
|
| 214 |
-
| **3** | 0.
|
| 215 |
-
| **3** | 0.
|
| 216 |
-
| **4** | 0.
|
| 217 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
**Context Size 1:**
|
| 224 |
|
| 225 |
-
1.
|
| 226 |
-
2.
|
| 227 |
-
3. `
|
| 228 |
|
| 229 |
**Context Size 2:**
|
| 230 |
|
| 231 |
-
1. `
|
| 232 |
-
2.
|
| 233 |
-
3.
|
| 234 |
|
| 235 |
**Context Size 3:**
|
| 236 |
|
| 237 |
-
1. `
|
| 238 |
-
2. `
|
| 239 |
-
3. `
|
| 240 |
|
| 241 |
**Context Size 4:**
|
| 242 |
|
| 243 |
-
1. `
|
| 244 |
-
2. `
|
| 245 |
-
3. `
|
| 246 |
|
| 247 |
|
| 248 |
### Key Findings
|
| 249 |
|
| 250 |
-
- **Best Predictability:** Context-4 with
|
| 251 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 252 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 253 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 254 |
|
| 255 |
---
|
|
@@ -265,64 +346,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 265 |
|
| 266 |
| Metric | Value |
|
| 267 |
|--------|-------|
|
| 268 |
-
| Vocabulary Size |
|
| 269 |
-
| Total Tokens |
|
| 270 |
-
| Mean Frequency |
|
| 271 |
| Median Frequency | 4 |
|
| 272 |
-
| Frequency Std Dev |
|
| 273 |
|
| 274 |
### Most Common Words
|
| 275 |
|
| 276 |
| Rank | Word | Frequency |
|
| 277 |
|------|------|-----------|
|
| 278 |
-
| 1 | i | 3,
|
| 279 |
-
| 2 | og | 2,
|
| 280 |
-
| 3 | af | 1,
|
| 281 |
-
| 4 | en | 1,
|
| 282 |
-
| 5 | til | 1,
|
| 283 |
-
| 6 | er | 1,
|
| 284 |
-
| 7 | den | 1,
|
| 285 |
-
| 8 | at |
|
| 286 |
-
| 9 | på |
|
| 287 |
-
| 10 | som |
|
| 288 |
|
| 289 |
### Least Common Words (from vocabulary)
|
| 290 |
|
| 291 |
| Rank | Word | Frequency |
|
| 292 |
|------|------|-----------|
|
| 293 |
-
| 1 |
|
| 294 |
-
| 2 |
|
| 295 |
-
| 3 |
|
| 296 |
-
| 4 |
|
| 297 |
-
| 5 |
|
| 298 |
-
| 6 |
|
| 299 |
-
| 7 |
|
| 300 |
-
| 8 |
|
| 301 |
-
| 9 |
|
| 302 |
-
| 10 |
|
| 303 |
|
| 304 |
### Zipf's Law Analysis
|
| 305 |
|
| 306 |
| Metric | Value |
|
| 307 |
|--------|-------|
|
| 308 |
-
| Zipf Coefficient | 1.
|
| 309 |
-
| R² (Goodness of Fit) | 0.
|
| 310 |
| Adherence Quality | **excellent** |
|
| 311 |
|
| 312 |
### Coverage Analysis
|
| 313 |
|
| 314 |
| Top N Words | Coverage |
|
| 315 |
|-------------|----------|
|
| 316 |
-
| Top 100 |
|
| 317 |
-
| Top 1,000 |
|
| 318 |
| Top 5,000 | 73.3% |
|
| 319 |
-
| Top 10,000 | 79.
|
| 320 |
|
| 321 |
### Key Findings
|
| 322 |
|
| 323 |
-
- **Zipf Compliance:** R²=0.
|
| 324 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 325 |
-
- **Long Tail:**
|
| 326 |
|
| 327 |
---
|
| 328 |
## 5. Word Embeddings Evaluation
|
|
@@ -335,24 +416,119 @@ Below are text samples generated from each Markov chain model:
|
|
| 335 |
|
| 336 |

|
| 337 |
|
| 338 |
-
### Model Comparison
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
### Key Findings
|
| 348 |
|
| 349 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 350 |
-
- **
|
| 351 |
-
- **
|
| 352 |
-
- **Recommendation:**
|
| 353 |
|
| 354 |
---
|
| 355 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |

|
| 358 |
|
|
@@ -360,11 +536,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 360 |
|
| 361 |
| Component | Recommended | Rationale |
|
| 362 |
|-----------|-------------|-----------|
|
| 363 |
-
| Tokenizer | **
|
| 364 |
-
| N-gram | **
|
| 365 |
-
| Markov | **Context-4** | Highest predictability (
|
| 366 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 367 |
|
|
|
|
| 368 |
---
|
| 369 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 370 |
|
|
@@ -554,7 +731,8 @@ If you use these models in your research, please cite:
|
|
| 554 |
author = {Kamali, Omar},
|
| 555 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 556 |
year = {2025},
|
| 557 |
-
|
|
|
|
| 558 |
url = {https://huggingface.co/wikilangs}
|
| 559 |
institution = {Omneity Labs}
|
| 560 |
}
|
|
@@ -570,7 +748,8 @@ MIT License - Free for academic and commercial use.
|
|
| 570 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 571 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 572 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 573 |
---
|
| 574 |
*Generated by Wikilangs Models Pipeline*
|
| 575 |
|
| 576 |
-
*Report Date:
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-germanic_north
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.557
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.7924
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-08
|
| 44 |
---
|
| 45 |
|
| 46 |
# Danish - Wikilangs Models
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.590x | 3.59 | 0.1227% | 1,644,330 |
|
| 94 |
+
| **16k** | 3.953x | 3.95 | 0.1351% | 1,493,346 |
|
| 95 |
+
| **32k** | 4.286x | 4.29 | 0.1465% | 1,377,449 |
|
| 96 |
+
| **64k** | 4.557x 🏆 | 4.56 | 0.1558% | 1,295,305 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Ole Bornemann henviser til: Oluf Bornemann – dansk-norsk biskop Ole Bornemann (r...`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁ole ▁bor nem ann ▁henviser ▁til : ▁oluf ▁bor nem ... (+27 more)` | 37 |
|
| 107 |
+
| 16k | `▁ole ▁bor nemann ▁henviser ▁til : ▁oluf ▁bor nemann ▁– ... (+21 more)` | 31 |
|
| 108 |
+
| 32k | `▁ole ▁bor nemann ▁henviser ▁til : ▁oluf ▁bor nemann ▁– ... (+20 more)` | 30 |
|
| 109 |
+
| 64k | `▁ole ▁bornemann ▁henviser ▁til : ▁oluf ▁bornemann ▁– ▁dansk - ... (+16 more)` | 26 |
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
**Sample 2:** `18. April er en dansk dokumentarfilm fra instrueret af Poul Meyer. Eksterne henv...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁ 1 8 . ▁april ▁er ▁en ▁dansk ▁dokumentarfilm ▁fra ... (+11 more)` | 21 |
|
| 116 |
+
| 16k | `▁ 1 8 . ▁april ▁er ▁en ▁dansk ▁dokumentarfilm ▁fra ... (+11 more)` | 21 |
|
| 117 |
+
| 32k | `▁ 1 8 . ▁april ▁er ▁en ▁dansk ▁dokumentarfilm ▁fra ... (+11 more)` | 21 |
|
| 118 |
+
| 64k | `▁ 1 8 . ▁april ▁er ▁en ▁dansk ▁dokumentarfilm ▁fra ... (+11 more)` | 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
**Sample 3:** `Takeshi Watanabe (født 10. september er en japansk fodboldspiller. Japans fodbol...`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁tak es hi ▁wat an ab e ▁( født ▁ ... (+12 more)` | 22 |
|
| 125 |
+
| 16k | `▁tak es hi ▁wat an abe ▁( født ▁ 1 ... (+11 more)` | 21 |
|
| 126 |
+
| 32k | `▁takes hi ▁wat an abe ▁( født ▁ 1 0 ... (+10 more)` | 20 |
|
| 127 |
+
| 64k | `▁takes hi ▁watanabe ▁( født ▁ 1 0 . ▁september ... (+8 more)` | 18 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.557x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.1227% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 139 |
|
| 140 |

|
| 141 |
|
| 142 |
+

|
| 143 |
+
|
| 144 |

|
| 145 |
|
| 146 |
### Results
|
| 147 |
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 205,179 | 17.65 | 1,697,331 | 7.2% | 18.6% |
|
| 151 |
+
| **2-gram** | Subword | 291 🏆 | 8.19 | 16,676 | 66.5% | 99.0% |
|
| 152 |
+
| **3-gram** | Word | 930,238 | 19.83 | 3,294,874 | 2.7% | 7.8% |
|
| 153 |
+
| **3-gram** | Subword | 2,629 | 11.36 | 143,880 | 25.6% | 68.8% |
|
| 154 |
+
| **4-gram** | Word | 2,232,256 | 21.09 | 5,289,799 | 1.9% | 5.1% |
|
| 155 |
+
| **4-gram** | Subword | 16,827 | 14.04 | 898,389 | 12.2% | 36.9% |
|
| 156 |
+
| **5-gram** | Word | 1,710,284 | 20.71 | 3,467,271 | 1.9% | 5.4% |
|
| 157 |
+
| **5-gram** | Subword | 78,315 | 16.26 | 3,371,746 | 6.1% | 20.8% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `er en` | 214,430 |
|
| 166 |
+
| 2 | `eksterne henvisninger` | 158,401 |
|
| 167 |
+
| 3 | `til at` | 148,332 |
|
| 168 |
+
| 4 | `for at` | 127,680 |
|
| 169 |
+
| 5 | `i den` | 98,315 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `referencer eksterne henvisninger` | 69,492 |
|
| 176 |
+
| 2 | `eksterne henvisninger fra` | 52,148 |
|
| 177 |
+
| 3 | `en del af` | 36,449 |
|
| 178 |
+
| 4 | `fra danmark fra` | 31,038 |
|
| 179 |
+
| 5 | `på grund af` | 24,747 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `referencer eksterne henvisninger fra` | 31,041 |
|
| 186 |
+
| 2 | `fra danmark fra danmark` | 18,040 |
|
| 187 |
+
| 3 | `eksterne henvisninger fra danmark` | 13,653 |
|
| 188 |
+
| 4 | `eksterne henvisninger fra usa` | 10,607 |
|
| 189 |
+
| 5 | `eksterne henvisninger film fra` | 8,857 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `referencer eksterne henvisninger fra danmark` | 8,198 |
|
| 196 |
+
| 2 | `referencer eksterne henvisninger fra usa` | 7,710 |
|
| 197 |
+
| 3 | `referencer eksterne henvisninger film fra` | 6,839 |
|
| 198 |
+
| 4 | `fra danmark fra danmark fra` | 6,792 |
|
| 199 |
+
| 5 | `eksterne henvisninger film fra fra` | 6,671 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `e r` | 14,686,017 |
|
| 206 |
+
| 2 | `e _` | 12,413,595 |
|
| 207 |
+
| 3 | `e n` | 11,692,715 |
|
| 208 |
+
| 4 | `d e` | 11,106,628 |
|
| 209 |
+
| 5 | `r _` | 9,958,657 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `e r _` | 6,591,787 |
|
| 216 |
+
| 2 | `e n _` | 5,761,673 |
|
| 217 |
+
| 3 | `_ d e` | 4,088,356 |
|
| 218 |
+
| 4 | `e t _` | 3,830,236 |
|
| 219 |
+
| 5 | `_ i _` | 3,324,144 |
|
| 220 |
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `_ o g _` | 2,559,398 |
|
| 226 |
+
| 2 | `_ f o r` | 1,851,842 |
|
| 227 |
+
| 3 | `_ a f _` | 1,698,296 |
|
| 228 |
+
| 4 | `d e n _` | 1,598,615 |
|
| 229 |
+
| 5 | `_ t i l` | 1,395,426 |
|
| 230 |
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
|
| 233 |
| Rank | N-gram | Count |
|
| 234 |
|------|--------|-------|
|
| 235 |
+
| 1 | `_ t i l _` | 1,111,382 |
|
| 236 |
+
| 2 | `_ d e n _` | 1,013,475 |
|
| 237 |
+
| 3 | `_ s o m _` | 926,452 |
|
| 238 |
+
| 4 | `_ f r a _` | 883,398 |
|
| 239 |
+
| 5 | `_ f o r _` | 860,091 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 291
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~21% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 251 |
|
| 252 |

|
| 253 |
|
| 254 |
+

|
| 255 |
+
|
| 256 |

|
| 257 |
|
| 258 |
### Results
|
| 259 |
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.9282 | 1.903 | 11.03 | 2,011,765 | 7.2% |
|
| 263 |
+
| **1** | Subword | 1.1734 | 2.255 | 7.58 | 8,958 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.3698 | 1.292 | 2.34 | 22,156,805 | 63.0% |
|
| 265 |
+
| **2** | Subword | 0.6816 | 1.604 | 4.74 | 67,792 | 31.8% |
|
| 266 |
+
| **3** | Word | 0.1562 | 1.114 | 1.36 | 51,659,329 | 84.4% |
|
| 267 |
+
| **3** | Subword | 0.7837 | 1.722 | 4.70 | 321,234 | 21.6% |
|
| 268 |
+
| **4** | Word | 0.0627 🏆 | 1.044 | 1.11 | 69,884,622 | 93.7% |
|
| 269 |
+
| **4** | Subword | 0.7511 | 1.683 | 3.88 | 1,508,279 | 24.9% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `i sverige bernadotte en tidligere premierminister vladimír vašíček tjekkisk eller med langt de flest...`
|
| 278 |
+
2. `og kortlagte dertil uhensigtsmæssige reaktionsmønstre på denne slags rum som et individuelt hold fra...`
|
| 279 |
+
3. `af det eneste gang i lælehe lunden og shimonoseki afstod unionen og sydlige ishav og egyptiske`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `er en aristokrat fra oneglia på en figur på fordi de manglede stadig konkrete beviser det objekts`
|
| 284 |
+
2. `eksterne henvisninger fra nederlandene fra flandern og champagne fra reims til danmark og derpaa ble...`
|
| 285 |
+
3. `til at åbne sine egne retoriske færdigheder selvom de ikke mangler det umiddelbares friskhed inspira...`
|
| 286 |
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `referencer eksterne henvisninger 05 i vejle i alt var omkring 100 000 lysår og en tykkelse af cirka`
|
| 290 |
+
2. `eksterne henvisninger fra mozambique fra maputo ved sommer ol mestre fra usa sølvmedaljevindere fra ...`
|
| 291 |
+
3. `en del af moskenes kommune i nordland fylke i norge med et underskud på godt én million kroner`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `referencer eksterne henvisninger fra storbritannien medaljevindere i gymnastik mestre fra grækenland...`
|
| 296 |
+
2. `fra danmark fra danmark af videnskabernes selskab i dansk biografisk leksikon fra danmark thomas 1 f...`
|
| 297 |
+
3. `eksterne henvisninger fra danmark film fra fra nordisk film dramafilm fra danmark instrueret af augu...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_het_i_ldshic._k`
|
| 307 |
+
2. `enoge_der_8.a_t.`
|
| 308 |
+
3. `rerliolin,_opon_`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `er_ers_kum._ten_e`
|
| 313 |
+
2. `e_asterdyra_et_fo`
|
| 314 |
+
3. `en_i_kitler_være_`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `er_randsbog_blev_p`
|
| 319 |
+
2. `en_i_han_ver_guldv`
|
| 320 |
+
3. `_det_af_daktat_og_`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `_og_kristia_schlesw`
|
| 325 |
+
2. `_forfattish_music_d`
|
| 326 |
+
3. `_af_storia_italiste`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 93.7% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (1,508,279 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 885,946 |
|
| 350 |
+
| Total Tokens | 86,775,295 |
|
| 351 |
+
| Mean Frequency | 97.95 |
|
| 352 |
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 6460.78 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | i | 3,396,891 |
|
| 360 |
+
| 2 | og | 2,568,581 |
|
| 361 |
+
| 3 | af | 1,716,528 |
|
| 362 |
+
| 4 | en | 1,361,402 |
|
| 363 |
+
| 5 | til | 1,134,702 |
|
| 364 |
+
| 6 | er | 1,086,363 |
|
| 365 |
+
| 7 | den | 1,040,601 |
|
| 366 |
+
| 8 | at | 980,457 |
|
| 367 |
+
| 9 | på | 948,450 |
|
| 368 |
+
| 10 | som | 939,070 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | elektronikinteresserede | 2 |
|
| 375 |
+
| 2 | sinoefloden | 2 |
|
| 376 |
+
| 3 | deathconsciousness | 2 |
|
| 377 |
+
| 4 | folkedanseforeninger | 2 |
|
| 378 |
+
| 5 | affranchi | 2 |
|
| 379 |
+
| 6 | superfilmen | 2 |
|
| 380 |
+
| 7 | kettletoft | 2 |
|
| 381 |
+
| 8 | sandays | 2 |
|
| 382 |
+
| 9 | crummack | 2 |
|
| 383 |
+
| 10 | rousays | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0001 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.998027 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 38.2% |
|
| 398 |
+
| Top 1,000 | 58.1% |
|
| 399 |
| Top 5,000 | 73.3% |
|
| 400 |
+
| Top 10,000 | 79.5% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9980 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 38.2% of corpus
|
| 406 |
+
- **Long Tail:** 875,946 words needed for remaining 20.5% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 416 |
|
| 417 |

|
| 418 |
|
|
|
|
| 419 |
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.7924 🏆 | 0.3816 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.7720 | 0.3058 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.7142 | 0.2314 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.7924 | 0.3910 | 0.4140 | 0.7940 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.7720 | 0.3076 | 0.6360 | 0.9000 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.7142 | 0.2447 | 0.7560 | 0.9480 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.7924 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.3104. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 75.6% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.739** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
|
| 465 |
+
#### Productive Suffixes
|
| 466 |
+
| Suffix | Examples |
|
| 467 |
+
|--------|----------|
|
| 468 |
+
| `-e` | uforfalskede, ledocarpaceae, hærgende |
|
| 469 |
+
| `-n` | fjerntogsperron, flexlinjen, industriudstillingen |
|
| 470 |
+
| `-s` | bialiks, epicurus, ratios |
|
| 471 |
+
| `-r` | bredevandsbakker, provinshertugdømmer, linseskyer |
|
| 472 |
+
| `-er` | bredevandsbakker, provinshertugdømmer, linseskyer |
|
| 473 |
+
| `-en` | flexlinjen, industriudstillingen, jordbundslæren |
|
| 474 |
+
| `-et` | affrikeret, polyarkiet, panserkorpset |
|
| 475 |
+
| `-ne` | heatene, beslutningsevne, skillingsviserne |
|
| 476 |
+
|
| 477 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 478 |
+
|
| 479 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 480 |
+
|
| 481 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 482 |
+
|------|----------|------------------|----------|
|
| 483 |
+
| `irke` | 2.09x | 181 contexts | birke, virke, dirke |
|
| 484 |
+
| `elig` | 1.65x | 256 contexts | helig, selig, zelig |
|
| 485 |
+
| `embe` | 2.00x | 89 contexts | tembe, rembe, embed |
|
| 486 |
+
| `nger` | 1.45x | 439 contexts | inger, enger, anger |
|
| 487 |
+
| `tisk` | 1.73x | 152 contexts | tiske, etisk, tiski |
|
| 488 |
+
| `ndel` | 1.42x | 393 contexts | andel, endel, ndele |
|
| 489 |
+
| `mber` | 1.52x | 264 contexts | imber, amber, ember |
|
| 490 |
+
| `nmar` | 1.77x | 85 contexts | anmary, enmark, donmar |
|
| 491 |
+
| `lsen` | 1.52x | 174 contexts | elsen, ólsen, olsen |
|
| 492 |
+
| `rste` | 1.33x | 307 contexts | erste, første, fyrste |
|
| 493 |
+
| `rden` | 1.38x | 227 contexts | erden, urden, arden |
|
| 494 |
+
| `oner` | 1.34x | 260 contexts | zoner, joner, loner |
|
| 495 |
+
|
| 496 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 497 |
+
|
| 498 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 499 |
+
|
| 500 |
+
*No significant affix co-occurrences detected.*
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 504 |
+
|
| 505 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 506 |
+
|
| 507 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 508 |
+
|------|-----------------|------------|------|
|
| 509 |
+
| profeterne | **`prof-et-er-ne`** | 7.5 | `prof` |
|
| 510 |
+
| regierende | **`regi-er-en-de`** | 7.5 | `regi` |
|
| 511 |
+
| kunstkritikeres | **`kunstkritik-er-es`** | 6.0 | `kunstkritik` |
|
| 512 |
+
| buccaneer | **`bucca-ne-er`** | 6.0 | `bucca` |
|
| 513 |
+
| udvikleres | **`udvikl-er-es`** | 6.0 | `udvikl` |
|
| 514 |
+
| håndredskaberne | **`håndredskab-er-ne`** | 6.0 | `håndredskab` |
|
| 515 |
+
| bolværkerne | **`bolværk-er-ne`** | 6.0 | `bolværk` |
|
| 516 |
+
| autogenereret | **`autog-en-er-er-et`** | 6.0 | `autog` |
|
| 517 |
+
| fællesgraven | **`fællesgrav-en`** | 4.5 | `fællesgrav` |
|
| 518 |
+
| feltflyvepladser | **`feltflyveplads-er`** | 4.5 | `feltflyveplads` |
|
| 519 |
+
| sangtrioen | **`sangtrio-en`** | 4.5 | `sangtrio` |
|
| 520 |
+
| teknologiparken | **`teknologipark-en`** | 4.5 | `teknologipark` |
|
| 521 |
+
| finnmarken | **`finnmark-en`** | 4.5 | `finnmark` |
|
| 522 |
+
| patriarker | **`patriark-er`** | 4.5 | `patriark` |
|
| 523 |
+
| synonymordbogen | **`synonymordbog-en`** | 4.5 | `synonymordbog` |
|
| 524 |
+
|
| 525 |
+
### 6.6 Linguistic Interpretation
|
| 526 |
+
|
| 527 |
+
> **Automated Insight:**
|
| 528 |
+
The language Danish shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 529 |
+
|
| 530 |
+
---
|
| 531 |
+
## 7. Summary & Recommendations
|
| 532 |
|
| 533 |

|
| 534 |
|
|
|
|
| 536 |
|
| 537 |
| Component | Recommended | Rationale |
|
| 538 |
|-----------|-------------|-----------|
|
| 539 |
+
| Tokenizer | **64k BPE** | Best compression (4.56x) |
|
| 540 |
+
| N-gram | **2-gram** | Lowest perplexity (291) |
|
| 541 |
+
| Markov | **Context-4** | Highest predictability (93.7%) |
|
| 542 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 543 |
|
| 544 |
+
|
| 545 |
---
|
| 546 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 547 |
|
|
|
|
| 731 |
author = {Kamali, Omar},
|
| 732 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 733 |
year = {2025},
|
| 734 |
+
doi = {10.5281/zenodo.18073153},
|
| 735 |
+
publisher = {Zenodo},
|
| 736 |
url = {https://huggingface.co/wikilangs}
|
| 737 |
institution = {Omneity Labs}
|
| 738 |
}
|
|
|
|
| 748 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 749 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 750 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 751 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 752 |
---
|
| 753 |
*Generated by Wikilangs Models Pipeline*
|
| 754 |
|
| 755 |
+
*Report Date: 2026-01-08 09:40:43*
|
models/embeddings/aligned/da_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73ddba4319b9c61ec922776d5b343a9cbea1227c8c0767cf44417e5423ef9a9d
|
| 3 |
+
size 1688091050
|
models/embeddings/aligned/da_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "da", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/da_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e960c2d1b89a6939207abf9f7febbf74e2003b55bd6f7adc3aecb53cf800ac82
|
| 3 |
+
size 65664
|
models/embeddings/aligned/da_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "da",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 190290,
|
| 7 |
+
"vocab_size": 636667
|
| 8 |
+
}
|
models/embeddings/aligned/da_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:988238892948f6febe998defae727df9b27ef13ad654566c2592db6e855c50e0
|
| 3 |
+
size 431130794
|
models/embeddings/aligned/da_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "da", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/da_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4723793b1c4d686f28210200dba84730468f082b6ec836d2a334c3ae54e18fe
|
| 3 |
+
size 4224
|
models/embeddings/aligned/da_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "da",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 190290,
|
| 7 |
+
"vocab_size": 636667
|
| 8 |
+
}
|
models/embeddings/aligned/da_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbc55665d9ef21bcf1bf7a7066f940953c4109b2066b330a89a85d89a420f561
|
| 3 |
+
size 850117546
|
models/embeddings/aligned/da_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "da", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/da_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9d144744dc4881b4e914e7dd36389eaa37118c43fd10a5dd6086f60d2700be0
|
| 3 |
+
size 16512
|
models/embeddings/aligned/da_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "da",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 190290,
|
| 7 |
+
"vocab_size": 636667
|
| 8 |
+
}
|
models/embeddings/monolingual/da_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73ddba4319b9c61ec922776d5b343a9cbea1227c8c0767cf44417e5423ef9a9d
|
| 3 |
+
size 1688091050
|
models/embeddings/monolingual/da_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 636667
|
| 15 |
}
|
models/embeddings/monolingual/da_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:988238892948f6febe998defae727df9b27ef13ad654566c2592db6e855c50e0
|
| 3 |
+
size 431130794
|
models/embeddings/monolingual/da_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 636667
|
| 15 |
}
|
models/embeddings/monolingual/da_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbc55665d9ef21bcf1bf7a7066f940953c4109b2066b330a89a85d89a420f561
|
| 3 |
+
size 850117546
|
models/embeddings/monolingual/da_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 636667
|
| 15 |
}
|
models/subword_markov/da_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a77f7bbbed8bb0a1b7ca11c531f2eee1c420a32a038d5bf767d0f10d93792553
|
| 3 |
+
size 472603
|
models/subword_markov/da_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 8958,
|
| 6 |
+
"total_transitions": 567528445
|
| 7 |
}
|
models/subword_markov/da_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02e021439972f73ee932e292c346b43df0b703b3962578d83df42a1d52b05ad8
|
| 3 |
+
size 2695498
|
models/subword_markov/da_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 67792,
|
| 6 |
+
"total_transitions": 567217531
|
| 7 |
}
|
models/subword_markov/da_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b242be7ec2b5a684749ddaa6ebad236c5e339177310a6202976c8283f1acb95
|
| 3 |
+
size 12404724
|
models/subword_markov/da_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 321234,
|
| 6 |
+
"total_transitions": 566906617
|
| 7 |
}
|
models/subword_markov/da_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7e3286db99aec5d2b702be54d85f0a66d05ce5fc24b6fa20ff723b07e868835
|
| 3 |
+
size 45985973
|
models/subword_markov/da_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 1508279,
|
| 6 |
+
"total_transitions": 566595703
|
| 7 |
}
|
models/subword_ngram/da_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bd36bc8cbd9bf04043fe587c2e91b0166f2f902ab648df930bf75a9be95bcc8e
|
| 3 |
+
size 232894
|
models/subword_ngram/da_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_ngrams": 16676,
|
| 6 |
+
"total_ngrams": 567528445
|
| 7 |
}
|
models/subword_ngram/da_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:106a616b5c1b46994fe3713bf07964e194dc7024d1343aa576e1f55ffee5566c
|
| 3 |
+
size 1806805
|
models/subword_ngram/da_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_ngrams": 143880,
|
| 6 |
+
"total_ngrams": 567217531
|
| 7 |
}
|
models/subword_ngram/da_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8ad24dc194e28d56de6bd6b6752b313f4078f256958653b23bfcaf4f18384a6
|
| 3 |
+
size 10697338
|
models/subword_ngram/da_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_ngrams": 898389,
|
| 6 |
+
"total_ngrams": 566906617
|
| 7 |
}
|
models/subword_ngram/da_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4c69c03af9234e68acd0c9634d7d828649f0dbb28f5225828f05240edb0b01a
|
| 3 |
+
size 40665412
|
models/subword_ngram/da_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "da",
|
| 5 |
+
"unique_ngrams": 3371746,
|
| 6 |
+
"total_ngrams": 566595703
|
| 7 |
+
}
|
models/tokenizer/da_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6c8bf9b62ee8ed799c0d6e5bebc50005a083cc2be10b93cd181bd4a4436bd9f
|
| 3 |
+
size 510050
|
models/tokenizer/da_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/da_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:324d7d968f80c82e64fdbdac1d11337ffbd42016efa24bdc474f7c51a18f0d34
|
| 3 |
+
size 793243
|
models/tokenizer/da_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/da_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09328d0a93713ba20c7759335de10e464b5b3fbba78c63e9902797a21f2e0c25
|
| 3 |
+
size 1376208
|
models/tokenizer/da_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/da_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0548659fdbbe7d6f4691b828e7ac15b89cfdc9c2b7b45ce559d3fa9f991cc1ad
|
| 3 |
+
size 372983
|
models/tokenizer/da_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/da_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33214b86b6b63aa31bc1355ba9be1ff25be7945088ca5b0916ab22f1725454af
|
| 3 |
+
size 13968436
|
models/vocabulary/da_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "da",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "da",
|
| 3 |
+
"vocabulary_size": 885946,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.022906069788993663,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.3767927431893056,
|
| 9 |
+
"top_1000": 0.5733930744322329,
|
| 10 |
+
"top_5000": 0.7236143220735781,
|
| 11 |
+
"top_10000": 0.7852248444527253
|
| 12 |
},
|
| 13 |
+
"hapax_count": 1127563,
|
| 14 |
+
"hapax_ratio": 0.5599989868433665,
|
| 15 |
+
"total_documents": 310914
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/da_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c576188f3cd603eafa88b134c0d4863d36f5b6e3fd8ed58400bcdb5359e10454
|
| 3 |
+
size 203010577
|
models/word_markov/da_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 2011765,
|
| 6 |
+
"total_transitions": 87591944
|
| 7 |
}
|
models/word_markov/da_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:695681b3d74d7d99c09b4665ac5ada28f4f214399b9a8185ef678510f9d563bd
|
| 3 |
+
size 638125991
|
models/word_markov/da_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "da",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "da",
|
| 5 |
+
"unique_contexts": 22156805,
|
| 6 |
+
"total_transitions": 87281030
|
| 7 |
}
|