Spaces:
Sleeping
Sleeping
[Update]Change app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,12 @@
|
|
| 1 |
-
import subprocess
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
| 4 |
-
from
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
-
|
| 7 |
-
from src.about import (
|
| 8 |
CITATION_BUTTON_LABEL,
|
| 9 |
CITATION_BUTTON_TEXT,
|
| 10 |
EVALUATION_QUEUE_TEXT,
|
| 11 |
INTRODUCTION_TEXT,
|
| 12 |
LLM_BENCHMARKS_TEXT,
|
|
|
|
| 13 |
TITLE,
|
| 14 |
)
|
| 15 |
from src.display.css_html_js import custom_css
|
|
@@ -26,320 +23,163 @@ from src.display.utils import (
|
|
| 26 |
WeightType,
|
| 27 |
Precision
|
| 28 |
)
|
| 29 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
| 30 |
-
from
|
| 31 |
-
from
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def restart_space():
|
| 35 |
-
API.restart_space(repo_id=REPO_ID)
|
| 36 |
-
|
| 37 |
-
try:
|
| 38 |
-
print(EVAL_REQUESTS_PATH)
|
| 39 |
-
snapshot_download(
|
| 40 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 41 |
-
)
|
| 42 |
-
except Exception:
|
| 43 |
-
restart_space()
|
| 44 |
-
try:
|
| 45 |
-
print(EVAL_RESULTS_PATH)
|
| 46 |
-
snapshot_download(
|
| 47 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 48 |
-
)
|
| 49 |
-
except Exception:
|
| 50 |
-
restart_space()
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 54 |
-
leaderboard_df = original_df.copy()
|
| 55 |
-
|
| 56 |
-
(
|
| 57 |
-
finished_eval_queue_df,
|
| 58 |
-
running_eval_queue_df,
|
| 59 |
-
pending_eval_queue_df,
|
| 60 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 61 |
-
|
| 62 |
|
| 63 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def update_table(
|
| 65 |
hidden_df: pd.DataFrame,
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
show_deleted: bool,
|
| 71 |
-
query: str,
|
| 72 |
):
|
| 73 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 74 |
-
filtered_df = filter_queries(query, filtered_df)
|
| 75 |
-
df = select_columns(filtered_df, columns)
|
| 76 |
-
return df
|
| 77 |
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
-
def select_columns(df: pd.DataFrame,
|
| 84 |
-
always_here_cols = [
|
| 85 |
-
|
| 86 |
-
AutoEvalColumn.model.name,
|
| 87 |
-
]
|
| 88 |
# We use COLS to maintain sorting
|
| 89 |
-
|
| 90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
| 91 |
-
]
|
| 92 |
-
return filtered_df
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
_q = _q.strip()
|
| 101 |
-
if _q != "":
|
| 102 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
| 103 |
-
if len(temp_filtered_df) > 0:
|
| 104 |
-
final_df.append(temp_filtered_df)
|
| 105 |
-
if len(final_df) > 0:
|
| 106 |
-
filtered_df = pd.concat(final_df)
|
| 107 |
-
filtered_df = filtered_df.drop_duplicates(
|
| 108 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 109 |
-
)
|
| 110 |
|
| 111 |
return filtered_df
|
| 112 |
|
| 113 |
|
| 114 |
-
def
|
| 115 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 116 |
-
) -> pd.DataFrame:
|
| 117 |
# Show all models
|
| 118 |
-
if
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
type_emoji = [t[0] for t in type_query]
|
| 124 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 125 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 126 |
|
| 127 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 128 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 129 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 130 |
-
filtered_df = filtered_df.loc[mask]
|
| 131 |
|
| 132 |
-
|
| 133 |
|
| 134 |
|
| 135 |
-
demo = gr.Blocks(css=custom_css)
|
| 136 |
with demo:
|
| 137 |
-
gr.
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
|
|
|
| 140 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 141 |
-
with gr.TabItem("
|
| 142 |
with gr.Row():
|
| 143 |
with gr.Column():
|
| 144 |
with gr.Row():
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
)
|
|
|
|
| 150 |
with gr.Row():
|
| 151 |
-
|
| 152 |
-
choices=[
|
| 153 |
-
|
| 154 |
-
for c in fields(AutoEvalColumn)
|
| 155 |
-
if not c.hidden and not c.never_hidden
|
| 156 |
-
],
|
| 157 |
-
value=[
|
| 158 |
-
c.name
|
| 159 |
-
for c in fields(AutoEvalColumn)
|
| 160 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 161 |
-
],
|
| 162 |
-
label="Select columns to show",
|
| 163 |
elem_id="column-select",
|
| 164 |
interactive=True,
|
| 165 |
)
|
|
|
|
| 166 |
with gr.Row():
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
)
|
| 170 |
-
|
| 171 |
-
#with gr.Box(elem_id="box-filter"):
|
| 172 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 173 |
-
# label="Unlearning types",
|
| 174 |
-
# choices=[t.to_str() for t in ModelType],
|
| 175 |
-
# value=[t.to_str() for t in ModelType],
|
| 176 |
-
# interactive=True,
|
| 177 |
-
# elem_id="filter-columns-type",
|
| 178 |
-
# )
|
| 179 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 180 |
-
label="Precision",
|
| 181 |
-
choices=[i.value.name for i in Precision],
|
| 182 |
-
value=[i.value.name for i in Precision],
|
| 183 |
-
interactive=True,
|
| 184 |
-
elem_id="filter-columns-precision",
|
| 185 |
-
)
|
| 186 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 187 |
-
label="Model sizes (in billions of parameters)",
|
| 188 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 189 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 190 |
-
interactive=True,
|
| 191 |
-
elem_id="filter-columns-size",
|
| 192 |
-
)
|
| 193 |
|
| 194 |
leaderboard_table = gr.components.Dataframe(
|
| 195 |
-
value=
|
| 196 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 197 |
-
+ shown_columns.value
|
| 198 |
-
],
|
| 199 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 200 |
-
datatype=TYPES,
|
| 201 |
elem_id="leaderboard-table",
|
| 202 |
interactive=False,
|
| 203 |
visible=True,
|
|
|
|
| 204 |
)
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
datatype=TYPES,
|
| 211 |
visible=False,
|
|
|
|
| 212 |
)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
hidden_leaderboard_table_for_search,
|
| 217 |
-
shown_columns,
|
| 218 |
-
filter_columns_type,
|
| 219 |
-
filter_columns_precision,
|
| 220 |
-
filter_columns_size,
|
| 221 |
-
deleted_models_visibility,
|
| 222 |
-
search_bar,
|
| 223 |
-
],
|
| 224 |
-
leaderboard_table,
|
| 225 |
-
)
|
| 226 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 227 |
selector.change(
|
| 228 |
update_table,
|
| 229 |
-
[
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
deleted_models_visibility,
|
| 236 |
-
search_bar,
|
| 237 |
],
|
| 238 |
leaderboard_table,
|
| 239 |
queue=True,
|
| 240 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 243 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 244 |
-
|
| 245 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 246 |
-
with gr.Column():
|
| 247 |
-
with gr.Row():
|
| 248 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 249 |
-
|
| 250 |
-
with gr.Column():
|
| 251 |
-
with gr.Accordion(
|
| 252 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 253 |
-
open=False,
|
| 254 |
-
):
|
| 255 |
-
with gr.Row():
|
| 256 |
-
finished_eval_table = gr.components.Dataframe(
|
| 257 |
-
value=finished_eval_queue_df,
|
| 258 |
-
headers=EVAL_COLS,
|
| 259 |
-
datatype=EVAL_TYPES,
|
| 260 |
-
row_count=5,
|
| 261 |
-
)
|
| 262 |
-
with gr.Accordion(
|
| 263 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 264 |
-
open=False,
|
| 265 |
-
):
|
| 266 |
-
with gr.Row():
|
| 267 |
-
running_eval_table = gr.components.Dataframe(
|
| 268 |
-
value=running_eval_queue_df,
|
| 269 |
-
headers=EVAL_COLS,
|
| 270 |
-
datatype=EVAL_TYPES,
|
| 271 |
-
row_count=5,
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
with gr.Accordion(
|
| 275 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 276 |
-
open=False,
|
| 277 |
-
):
|
| 278 |
-
with gr.Row():
|
| 279 |
-
pending_eval_table = gr.components.Dataframe(
|
| 280 |
-
value=pending_eval_queue_df,
|
| 281 |
-
headers=EVAL_COLS,
|
| 282 |
-
datatype=EVAL_TYPES,
|
| 283 |
-
row_count=5,
|
| 284 |
-
)
|
| 285 |
-
with gr.Row():
|
| 286 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 287 |
-
|
| 288 |
-
with gr.Row():
|
| 289 |
-
with gr.Column():
|
| 290 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 291 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 292 |
-
model_type = gr.Dropdown(
|
| 293 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 294 |
-
label="Model type",
|
| 295 |
-
multiselect=False,
|
| 296 |
-
value=None,
|
| 297 |
-
interactive=True,
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
with gr.Column():
|
| 301 |
-
precision = gr.Dropdown(
|
| 302 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 303 |
-
label="Precision",
|
| 304 |
-
multiselect=False,
|
| 305 |
-
value="float16",
|
| 306 |
-
interactive=True,
|
| 307 |
-
)
|
| 308 |
-
weight_type = gr.Dropdown(
|
| 309 |
-
choices=[i.value.name for i in WeightType],
|
| 310 |
-
label="Weights type",
|
| 311 |
-
multiselect=False,
|
| 312 |
-
value="Original",
|
| 313 |
-
interactive=True,
|
| 314 |
-
)
|
| 315 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 316 |
-
|
| 317 |
-
submit_button = gr.Button("Submit Eval")
|
| 318 |
-
submission_result = gr.Markdown()
|
| 319 |
-
submit_button.click(
|
| 320 |
-
add_new_eval,
|
| 321 |
-
[
|
| 322 |
-
model_name_textbox,
|
| 323 |
-
base_model_name_textbox,
|
| 324 |
-
revision_name_textbox,
|
| 325 |
-
precision,
|
| 326 |
-
weight_type,
|
| 327 |
-
model_type,
|
| 328 |
-
],
|
| 329 |
-
submission_result,
|
| 330 |
-
)
|
| 331 |
|
| 332 |
with gr.Row():
|
| 333 |
-
with gr.Accordion("📙 Citation", open=
|
| 334 |
citation_button = gr.Textbox(
|
| 335 |
value=CITATION_BUTTON_TEXT,
|
| 336 |
label=CITATION_BUTTON_LABEL,
|
| 337 |
-
lines=
|
| 338 |
elem_id="citation-button",
|
| 339 |
show_copy_button=True,
|
| 340 |
)
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
from src.display.about import (
|
|
|
|
|
|
|
|
|
|
| 4 |
CITATION_BUTTON_LABEL,
|
| 5 |
CITATION_BUTTON_TEXT,
|
| 6 |
EVALUATION_QUEUE_TEXT,
|
| 7 |
INTRODUCTION_TEXT,
|
| 8 |
LLM_BENCHMARKS_TEXT,
|
| 9 |
+
FAQ_TEXT,
|
| 10 |
TITLE,
|
| 11 |
)
|
| 12 |
from src.display.css_html_js import custom_css
|
|
|
|
| 23 |
WeightType,
|
| 24 |
Precision
|
| 25 |
)
|
| 26 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
| 27 |
+
from PIL import Image
|
| 28 |
+
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
| 29 |
+
import copy
|
| 30 |
|
| 31 |
|
| 32 |
def restart_space():
|
| 33 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Searching and filtering
|
| 36 |
+
raw_data = dummydf()
|
| 37 |
+
methods = list(set(raw_data['Method']))
|
| 38 |
+
metrics = ["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA", "FID", "Time (s)", "Storage (GB)", "Memory (GB)"]
|
| 39 |
+
|
| 40 |
def update_table(
|
| 41 |
hidden_df: pd.DataFrame,
|
| 42 |
+
columns_1: list,
|
| 43 |
+
columns_2: list,
|
| 44 |
+
columns_3: list,
|
| 45 |
+
model1: list,
|
|
|
|
|
|
|
| 46 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
filtered_df = select_columns(hidden_df, columns_1, columns_2, columns_3)
|
| 49 |
|
| 50 |
+
filtered_df = filter_model1(filtered_df, model1)
|
| 51 |
+
|
| 52 |
+
return filtered_df
|
| 53 |
|
| 54 |
|
| 55 |
+
def select_columns(df: pd.DataFrame, columns_1: list, columns_2: list, columns_3: list) -> pd.DataFrame:
|
| 56 |
+
always_here_cols = ["Method"]
|
| 57 |
+
|
|
|
|
|
|
|
| 58 |
# We use COLS to maintain sorting
|
| 59 |
+
all_columns = metrics
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
if (len(columns_1)+len(columns_2) + len(columns_3)) == 0:
|
| 62 |
+
filtered_df = df[
|
| 63 |
+
always_here_cols +
|
| 64 |
+
[c for c in all_columns if c in df.columns]
|
| 65 |
+
]
|
| 66 |
|
| 67 |
+
else:
|
| 68 |
+
filtered_df = df[
|
| 69 |
+
always_here_cols +
|
| 70 |
+
[c for c in all_columns if c in df.columns and (c in columns_1 or c in columns_2 or c in columns_3 ) ]
|
| 71 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
return filtered_df
|
| 74 |
|
| 75 |
|
| 76 |
+
def filter_model1(df: pd.DataFrame, model_query: list) -> pd.DataFrame:
|
|
|
|
|
|
|
| 77 |
# Show all models
|
| 78 |
+
if len(model_query) == 0:
|
| 79 |
+
return df
|
| 80 |
+
|
| 81 |
+
filtered_df = df
|
| 82 |
+
filtered_df = filtered_df[filtered_df["Method"].isin(model_query)]
|
| 83 |
+
return filtered_df
|
| 84 |
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
demo = gr.Blocks(css=custom_css)
|
| 88 |
|
| 89 |
|
|
|
|
| 90 |
with demo:
|
| 91 |
+
with gr.Row():
|
| 92 |
+
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
|
| 93 |
+
show_download_button=False, container=False)
|
| 94 |
+
gr.HTML(TITLE, elem_id="title")
|
| 95 |
|
| 96 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 98 |
+
with gr.TabItem("🏅 UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
with gr.Row():
|
| 102 |
+
model1_column = gr.CheckboxGroup(
|
| 103 |
+
label="Unlearning Methods",
|
| 104 |
+
choices=methods,
|
| 105 |
+
interactive=True,
|
| 106 |
+
elem_id="column-select",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
with gr.Row():
|
| 110 |
+
shown_columns_1 = gr.CheckboxGroup(
|
| 111 |
+
choices=["Style-UA", "Style-IRA", "Style-CRA", "Object-UA", "Object-IRA", "Object-CRA"],
|
| 112 |
+
label="Style / Object Unlearning Effectiveness",
|
| 113 |
+
elem_id="column-select",
|
| 114 |
+
interactive=True,
|
| 115 |
)
|
| 116 |
+
|
| 117 |
with gr.Row():
|
| 118 |
+
shown_columns_2 = gr.CheckboxGroup(
|
| 119 |
+
choices=["FID"],
|
| 120 |
+
label="Image Quality",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
elem_id="column-select",
|
| 122 |
interactive=True,
|
| 123 |
)
|
| 124 |
+
|
| 125 |
with gr.Row():
|
| 126 |
+
shown_columns_3 = gr.CheckboxGroup(
|
| 127 |
+
choices=["Time (s)", "Memory (GB)", "Storage (GB)"],
|
| 128 |
+
label="Resource Costs",
|
| 129 |
+
elem_id="column-select",
|
| 130 |
+
interactive=True,
|
| 131 |
)
|
| 132 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
leaderboard_table = gr.components.Dataframe(
|
| 135 |
+
value= raw_data,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
elem_id="leaderboard-table",
|
| 137 |
interactive=False,
|
| 138 |
visible=True,
|
| 139 |
+
# column_widths=["2%", "33%"]
|
| 140 |
)
|
| 141 |
|
| 142 |
+
game_bench_df_for_search = gr.components.Dataframe(
|
| 143 |
+
value= raw_data,
|
| 144 |
+
elem_id="leaderboard-table",
|
| 145 |
+
interactive=False,
|
|
|
|
| 146 |
visible=False,
|
| 147 |
+
# column_widths=["2%", "33%"]
|
| 148 |
)
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
for selector in [shown_columns_1,shown_columns_2, shown_columns_3, model1_column]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
selector.change(
|
| 153 |
update_table,
|
| 154 |
+
[
|
| 155 |
+
game_bench_df_for_search,
|
| 156 |
+
shown_columns_1,
|
| 157 |
+
shown_columns_2,
|
| 158 |
+
shown_columns_3,
|
| 159 |
+
model1_column,
|
|
|
|
|
|
|
| 160 |
],
|
| 161 |
leaderboard_table,
|
| 162 |
queue=True,
|
| 163 |
)
|
| 164 |
+
|
| 165 |
+
with gr.TabItem("🚀 Model Submit", elem_id="llm-benchmark-tab-table", id=1):
|
| 166 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 167 |
+
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
| 168 |
|
| 169 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 170 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 171 |
+
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
+
with gr.Accordion("📙 Citation", open=True):
|
| 175 |
citation_button = gr.Textbox(
|
| 176 |
value=CITATION_BUTTON_TEXT,
|
| 177 |
label=CITATION_BUTTON_LABEL,
|
| 178 |
+
lines=8,
|
| 179 |
elem_id="citation-button",
|
| 180 |
show_copy_button=True,
|
| 181 |
)
|
| 182 |
|
| 183 |
+
|
| 184 |
+
demo.launch()
|
| 185 |
+
|
|
|