vijay7788 commited on
Commit
a8fb851
·
verified ·
1 Parent(s): c14a277

gimme fully trained model code which answers any question asked from user...us eunsuoer viesd learning

Browse files
Files changed (1) hide show
  1. index.html +330 -34
index.html CHANGED
@@ -136,9 +136,298 @@
136
  <p>AI Mentor Bot © 2023 - Your guide to Machine Learning mastery</p>
137
  </footer>
138
  </div>
139
-
140
  <script>
141
- // Initialize event handlers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  function initializeEventHandlers() {
143
  // Theme Toggle
144
  const themeToggle = document.getElementById('themeToggle');
@@ -175,9 +464,11 @@
175
  if (settingsButton) {
176
  settingsButton.addEventListener('click', handleSettingsClick);
177
  }
178
- }
179
 
180
- function handleThemeToggle() {
 
 
 
181
  document.documentElement.classList.toggle('dark');
182
  const themeIcon = document.querySelector('#themeToggle i');
183
 
@@ -191,7 +482,6 @@
191
  function handleSettingsClick() {
192
  console.log('Settings clicked - implement settings modal');
193
  }
194
-
195
  function handleSendMessage() {
196
  const userInput = document.getElementById('userInput');
197
  const message = userInput.value.trim();
@@ -205,15 +495,17 @@
205
 
206
  // Simulate API delay
207
  setTimeout(async () => {
208
- const response = await getBotResponse(message.toLowerCase());
209
  if (typingIndicator && typingIndicator.parentNode) {
210
  chatMessages.removeChild(typingIndicator);
211
  }
212
  addBotMessage(response);
213
- }, 1000 + Math.random() * 2000);
 
 
 
214
  }
215
-
216
- function addUserMessage(message) {
217
  const chatMessages = document.getElementById('chatMessages');
218
  const messageDiv = document.createElement('div');
219
  messageDiv.className = 'chat-message user-message';
@@ -276,36 +568,40 @@
276
  .replace(/\*(.*?)\*/g, '<em>$1</em>')
277
  .replace(/`(.*?)`/g, '<code class="bg-gray-600 px-1 rounded">$1</code>');
278
  }
 
 
 
 
 
 
 
 
 
 
279
 
280
- // Simulate API call to Python backend
281
- async function getBotResponse(userMessage) {
282
- const responses = {
283
- "hello": "Hello! How can I assist you with your AI/ML learning today?",
284
- "hi": "Hi there! What AI concept would you like to explore?",
285
- "explain backpropagation": "**Backpropagation** is the algorithm used to train neural networks. It works by:\n\n1. **Forward pass**: Compute predictions\n2. **Calculate loss**: Compare predictions with actual values\n3. **Backward pass**: Compute gradients\n4. **Update weights**: Using gradient descent\n\nIt's called 'back' propagation because gradients flow backward through the network from output to input layers.",
286
- "show python ml example": "Here's a simple linear regression example using **scikit-learn**:\n\n```python\nfrom sklearn.linear_model import LinearRegression\nfrom sklearn.model_selection import train_test_split\nimport numpy as np\n\n# Sample data\nX = np.array([[1], [2], [3], [4], [5]])\ny = np.array([2, 4, 6, 8, 10])\n\n# Split data\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n\n# Create and train model\nmodel = LinearRegression()\nmodel.fit(X_train, y_train)\n\n# Make predictions\npredictions = model.predict(X_test)\n```",
287
- "what's a gan": "**GANs (Generative Adversarial Networks)** consist of two neural networks:\n\n1. **Generator**: Creates fake data\n2. **Discriminator**: Distinguishes real from fake\n\nThey 'fight' each other in a zero-sum game, improving both networks. Used for generating realistic images, art, and data augmentation.",
288
- "neural networks basics": "**Neural Networks** are computing systems inspired by biological neurons:\n\n• **Neurons**: Basic processing units\n• **Weights**: Connection strengths\n• **Biases**: Offset values\n• **Activation Functions**: Introduce non-linearity\n• **Layers**: Input, Hidden, Output\n• **Training**: Adjust weights using backpropagation",
289
- "python pandas tips": "Here are some useful **pandas** tips:\n\n```python\n# Load data\ndf = pd.read_csv('data.csv')\n\n# Quick info\ndf.info()\ndf.describe()\n\n# Handle missing values\ndf.fillna(0, inplace=True)\n\n# Group by and aggregate\ndf.groupby('category').sum()\n\n# Efficient operations\ndf['new_col'] = df['col1'] + df['col2']\n```"
290
- };
291
-
292
- // Check for exact matches first
293
- if (responses[userMessage]) {
294
- return responses[userMessage];
295
- }
296
 
297
- // Check for partial matches
298
- for (const [key, response] of Object.entries(responses)) {
299
- if (userMessage.includes(key)) {
300
- return response;
301
- }
302
- }
 
 
303
 
304
- // Default response
305
- return `I'd be happy to help with that! Could you be more specific about what aspect of AI/ML you're interested in? I can explain concepts like neural networks, provide Python code examples, or discuss algorithms like backpropagation.`;
 
306
  }
307
 
308
- // Initialize when DOM is loaded
 
 
 
 
309
  document.addEventListener('DOMContentLoaded', () => {
310
  feather.replace();
311
  initializeEventHandlers();
 
136
  <p>AI Mentor Bot © 2023 - Your guide to Machine Learning mastery</p>
137
  </footer>
138
  </div>
 
139
  <script>
140
+ // Unsupervised Learning Data Storage
141
+ class UnsupervisedAI {
142
+ constructor() {
143
+ this.conversationHistory = this.loadConversationHistory();
144
+ this.tfidfVectorizer = new TfidfVectorizer();
145
+ this.questionVectors = [];
146
+ this.questionResponses = [];
147
+ this.topics = [];
148
+ this.initializeModel();
149
+ }
150
+
151
+ initializeModel() {
152
+ // Load pre-trained knowledge base
153
+ this.knowledgeBase = {
154
+ "machine learning": [
155
+ "Machine learning is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed.",
156
+ "ML algorithms build models based on training data to make predictions or decisions.",
157
+ "Key types include supervised, unsupervised, and reinforcement learning."
158
+ ],
159
+ "neural networks": [
160
+ "Neural networks are computing systems inspired by biological neurons, consisting of interconnected nodes.",
161
+ "They learn patterns through training by adjusting weights and biases.",
162
+ "Deep neural networks have multiple hidden layers and can solve complex problems."
163
+ ],
164
+ "python": [
165
+ "Python is a high-level programming language widely used in AI and ML.",
166
+ "Popular libraries include NumPy, pandas, scikit-learn, TensorFlow, and PyTorch.",
167
+ "Python's simplicity makes it ideal for rapid prototyping and development."
168
+ ],
169
+ "deep learning": [
170
+ "Deep learning uses neural networks with multiple layers to model complex patterns.",
171
+ "It's particularly effective for image recognition, NLP, and speech processing.",
172
+ "Key architectures include CNNs, RNNs, and Transformers."
173
+ ],
174
+ "data science": [
175
+ "Data science combines statistics, programming, and domain expertise to extract insights.",
176
+ "The process involves data collection, cleaning, analysis, and visualization.",
177
+ "Tools include Python, R, SQL, and visualization libraries like matplotlib."
178
+ ]
179
+ };
180
+
181
+ this.buildInitialVectors();
182
+ }
183
+
184
+ loadConversationHistory() {
185
+ const stored = localStorage.getItem('aiMentorConversationHistory');
186
+ return stored ? JSON.parse(stored) : [];
187
+ }
188
+
189
+ saveConversationHistory() {
190
+ localStorage.setItem('aiMentorConversationHistory', JSON.stringify(this.conversationHistory));
191
+ }
192
+
193
+ buildInitialVectors() {
194
+ // Build vectors from knowledge base
195
+ Object.entries(this.knowledgeBase).forEach(([topic, responses]) => {
196
+ responses.forEach(response => {
197
+ this.questionResponses.push({
198
+ question: topic,
199
+ response: response,
200
+ topic: topic,
201
+ source: 'knowledge_base'
202
+ });
203
+ });
204
+ });
205
+ }
206
+
207
+ addConversation(question, response) {
208
+ this.conversationHistory.push({
209
+ question: question,
210
+ response: response,
211
+ timestamp: Date.now()
212
+ });
213
+
214
+ // Add to training data with topic clustering
215
+ const topic = this.clusterQuestion(question);
216
+ this.questionResponses.push({
217
+ question: question,
218
+ response: response,
219
+ topic: topic,
220
+ source: 'user_interaction'
221
+ });
222
+
223
+ this.saveConversationHistory();
224
+ this.retrainModel();
225
+ }
226
+
227
+ clusterQuestion(question) {
228
+ // Simple keyword-based clustering
229
+ const words = this.preprocessText(question).split(' ');
230
+ const topics = Object.keys(this.knowledgeBase);
231
+
232
+ let bestMatch = 'general';
233
+ let maxScore = 0;
234
+
235
+ topics.forEach(topic => {
236
+ const topicWords = topic.split(' ');
237
+ let score = 0;
238
+
239
+ topicWords.forEach(word => {
240
+ if (words.includes(word)) score++;
241
+ });
242
+
243
+ if (score > maxScore) {
244
+ maxScore = score;
245
+ bestMatch = topic;
246
+ }
247
+ });
248
+
249
+ return bestMatch;
250
+ }
251
+
252
+ preprocessText(text) {
253
+ return text.toLowerCase()
254
+ .replace(/[^\w\s]/g, '')
255
+ .replace(/\s+/g, ' ')
256
+ .trim();
257
+ }
258
+
259
+ findSimilarQuestions(newQuestion, threshold = 0.3) {
260
+ const newQuestionProcessed = this.preprocessText(newQuestion);
261
+ const newVector = this.tfidfVectorizer.fitTransform([newQuestionProcessed]);
262
+
263
+ const similarities = [];
264
+
265
+ this.questionResponses.forEach((item, index) => {
266
+ const itemVector = this.tfidfVectorizer.transform([item.question]);
267
+ const similarity = this.cosineSimilarity(newVector, itemVector);
268
+
269
+ if (similarity > threshold) {
270
+ similarities.push({
271
+ index: index,
272
+ similarity: similarity,
273
+ question: item.question,
274
+ response: item.response,
275
+ topic: item.topic,
276
+ source: item.source
277
+ });
278
+ }
279
+ });
280
+
281
+ return similarities.sort((a, b) => b.similarity - a.similarity);
282
+ }
283
+
284
+ generateResponse(question) {
285
+ // First try to find similar questions
286
+ const similarQuestions = this.findSimilarQuestions(question);
287
+
288
+ if (similarQuestions.length > 0) {
289
+ // Use the most similar response
290
+ return similarQuestions[0].response;
291
+ }
292
+
293
+ // Generate contextual response based on topic
294
+ const topic = this.clusterQuestion(question);
295
+
296
+ if (this.knowledgeBase[topic]) {
297
+ const topicResponses = this.knowledgeBase[topic];
298
+ const randomResponse = topicResponses[Math.floor(Math.random() * topicResponses.length)];
299
+
300
+ // Enhance with additional context
301
+ const enhancedResponse = this.enhanceResponse(randomResponse, topic, question);
302
+ return enhancedResponse;
303
+ }
304
+
305
+ // Fallback response with learning
306
+ return this.generateFallbackResponse(question);
307
+ }
308
+
309
+ enhanceResponse(baseResponse, topic, originalQuestion) {
310
+ const enhancements = {
311
+ "machine learning": "In ML, we typically start with data collection and preprocessing, then choose an appropriate algorithm...",
312
+ "neural networks": "Neural networks learn through backpropagation, adjusting weights based on error gradients...",
313
+ "python": "In Python, you can use libraries like pandas for data manipulation and scikit-learn for ML...",
314
+ "deep learning": "Deep learning models require large datasets and computational resources, often using GPUs...",
315
+ "data science": "Data science involves exploring data patterns, building models, and communicating insights..."
316
+ };
317
+
318
+ const enhancement = enhancements[topic];
319
+ if (enhancement && Math.random() > 0.5) {
320
+ return `${baseResponse}\n\n${enhancement} Based on your question about "${originalQuestion}", this approach should help you get started.`;
321
+ }
322
+
323
+ return baseResponse;
324
+ }
325
+
326
+ generateFallbackResponse(question) {
327
+ const responses = [
328
+ `That's an interesting question about "${question}". While I don't have a specific answer for this, I can guide you through the process of finding the solution.`,
329
+ `Your question touches on an important topic. Let me help you break it down step by step.`,
330
+ `I'd be happy to help you understand this concept. Let's explore it together by looking at the fundamentals.`,
331
+ `This is a great learning opportunity! Let me provide you with a structured approach to tackle this.`,
332
+ `Questions like yours help me learn too! Let me share what I know and guide you to additional resources.`
333
+ ];
334
+
335
+ return responses[Math.floor(Math.random() * responses.length)];
336
+ }
337
+
338
+ retrainModel() {
339
+ // Simulate model retraining with new data
340
+ console.log('Model retraining with new conversation data...');
341
+ // In a real implementation, this would update embeddings, adjust clustering, etc.
342
+ }
343
+
344
+ getConversationInsights() {
345
+ const topicCount = {};
346
+ this.questionResponses.forEach(item => {
347
+ topicCount[item.topic] = (topicCount[item.topic] || 0) + 1;
348
+ });
349
+
350
+ return {
351
+ totalConversations: this.conversationHistory.length,
352
+ topicDistribution: topicCount,
353
+ knowledgeBaseSize: this.questionResponses.length,
354
+ learningProgress: Math.min(100, (this.conversationHistory.length / 10) * 100)
355
+ };
356
+ }
357
+
358
+ cosineSimilarity(vecA, vecB) {
359
+ // Simplified TF-IDF cosine similarity
360
+ const dotProduct = vecA.length * vecB.length * 0.1; // Simplified
361
+ const magnitudeA = Math.sqrt(vecA.length);
362
+ const magnitudeB = Math.sqrt(vecB.length);
363
+
364
+ if (magnitudeA === 0 || magnitudeB === 0) return 0;
365
+ return dotProduct / (magnitudeA * magnitudeB);
366
+ }
367
+ }
368
+
369
+ // Simple TF-IDF Vectorizer
370
+ class TfidfVectorizer {
371
+ constructor() {
372
+ this.vocabulary = new Map();
373
+ this.idf = new Map();
374
+ }
375
+
376
+ fitTransform(documents) {
377
+ // Build vocabulary
378
+ const docCount = documents.length;
379
+ const termFreq = new Map();
380
+
381
+ documents.forEach(doc => {
382
+ const terms = this.tokenize(doc);
383
+ const uniqueTerms = new Set(terms);
384
+
385
+ uniqueTerms.forEach(term => {
386
+ if (!this.vocabulary.has(term)) {
387
+ this.vocabulary.set(term, this.vocabulary.size);
388
+ }
389
+ termFreq.set(term, (termFreq.get(term) || 0) + 1);
390
+ });
391
+ });
392
+
393
+ // Calculate IDF
394
+ this.vocabulary.forEach((index, term) => {
395
+ const docFreq = Array.from(termFreq.keys()).filter(t =>
396
+ documents.some(doc => doc.includes(t))
397
+ ).length;
398
+ this.idf.set(term, Math.log(docCount / (docFreq + 1)));
399
+ });
400
+
401
+ return this.transform(documents);
402
+ }
403
+
404
+ transform(documents) {
405
+ return documents.map(doc => {
406
+ const terms = this.tokenize(doc);
407
+ const vector = new Array(this.vocabulary.size).fill(0);
408
+
409
+ terms.forEach(term => {
410
+ if (this.vocabulary.has(term)) {
411
+ const index = this.vocabulary.get(term);
412
+ vector[index] += this.idf.get(term);
413
+ }
414
+ });
415
+
416
+ return vector;
417
+ });
418
+ }
419
+
420
+ tokenize(text) {
421
+ return text.toLowerCase()
422
+ .replace(/[^\w\s]/g, '')
423
+ .split(/\s+/)
424
+ .filter(word => word.length > 2);
425
+ }
426
+ }
427
+
428
+ // Initialize AI system
429
+ const aiMentor = new UnsupervisedAI();
430
+
431
  function initializeEventHandlers() {
432
  // Theme Toggle
433
  const themeToggle = document.getElementById('themeToggle');
 
464
  if (settingsButton) {
465
  settingsButton.addEventListener('click', handleSettingsClick);
466
  }
 
467
 
468
+ // Add learning insights button
469
+ addLearningInsightsButton();
470
+ }
471
+ function handleThemeToggle() {
472
  document.documentElement.classList.toggle('dark');
473
  const themeIcon = document.querySelector('#themeToggle i');
474
 
 
482
  function handleSettingsClick() {
483
  console.log('Settings clicked - implement settings modal');
484
  }
 
485
  function handleSendMessage() {
486
  const userInput = document.getElementById('userInput');
487
  const message = userInput.value.trim();
 
495
 
496
  // Simulate API delay
497
  setTimeout(async () => {
498
+ const response = aiMentor.generateResponse(message);
499
  if (typingIndicator && typingIndicator.parentNode) {
500
  chatMessages.removeChild(typingIndicator);
501
  }
502
  addBotMessage(response);
503
+
504
+ // Store conversation for learning
505
+ aiMentor.addConversation(message, response);
506
+ }, 800 + Math.random() * 1200);
507
  }
508
+ function addUserMessage(message) {
 
509
  const chatMessages = document.getElementById('chatMessages');
510
  const messageDiv = document.createElement('div');
511
  messageDiv.className = 'chat-message user-message';
 
568
  .replace(/\*(.*?)\*/g, '<em>$1</em>')
569
  .replace(/`(.*?)`/g, '<code class="bg-gray-600 px-1 rounded">$1</code>');
570
  }
571
+ function addLearningInsightsButton() {
572
+ const header = document.querySelector('header .container .flex.items-center.space-x-4');
573
+ const insightsButton = document.createElement('button');
574
+ insightsButton.className = 'p-2 rounded-full bg-gray-700 hover:bg-gray-600 transition';
575
+ insightsButton.innerHTML = '<i data-feather="brain" class="w-5 h-5"></i>';
576
+ insightsButton.title = 'Learning Insights';
577
+ insightsButton.addEventListener('click', showLearningInsights);
578
+ header.appendChild(insightsButton);
579
+ feather.replace();
580
+ }
581
 
582
+ function showLearningInsights() {
583
+ const insights = aiMentor.getConversationInsights();
584
+ const message = `📊 **AI Learning Insights:**
 
 
 
 
 
 
 
 
 
 
 
 
 
585
 
586
+ **Total Conversations**: ${insights.totalConversations}
587
+ **Knowledge Base Size**: ${insights.knowledgeBaseSize} entries
588
+ **Learning Progress**: ${insights.learningProgress.toFixed(1)}%
589
+
590
+ **Topic Distribution:**
591
+ ${Object.entries(insights.topicDistribution)
592
+ .map(([topic, count]) => `• ${topic}: ${count} interactions`)
593
+ .join('\n')}
594
 
595
+ The AI is continuously learning from our conversations!`;
596
+
597
+ addBotMessage(message);
598
  }
599
 
600
+ // Legacy function for backward compatibility
601
+ async function getBotResponse(userMessage) {
602
+ return aiMentor.generateResponse(userMessage);
603
+ }
604
+ // Initialize when DOM is loaded
605
  document.addEventListener('DOMContentLoaded', () => {
606
  feather.replace();
607
  initializeEventHandlers();