Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
|
|
|
| 1 |
# app.py — MCP server using an open-source local LLM (transformers) or a rule-based fallback
|
| 2 |
# - Uses FastMCP for tools
|
| 3 |
# - Gradio ChatInterface for UI
|
| 4 |
# - process_document accepts local path and transforms it to a file:// URL in the tool call
|
| 5 |
|
| 6 |
-
|
| 7 |
from mcp.server.fastmcp import FastMCP
|
| 8 |
from typing import Optional, List, Tuple, Any, Dict
|
| 9 |
import requests
|
|
@@ -15,77 +15,342 @@ import traceback
|
|
| 15 |
import inspect
|
| 16 |
import re
|
| 17 |
|
| 18 |
-
|
| 19 |
# Optional imports for local model
|
| 20 |
try:
|
| 21 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 22 |
-
TRANSFORMERS_AVAILABLE = True
|
| 23 |
except Exception:
|
| 24 |
-
TRANSFORMERS_AVAILABLE = False
|
| 25 |
-
|
| 26 |
|
| 27 |
# Optional embeddings for light retrieval if desired
|
| 28 |
try:
|
| 29 |
-
from sentence_transformers import SentenceTransformer
|
| 30 |
-
import numpy as np
|
| 31 |
-
SENTEVAL_AVAILABLE = True
|
| 32 |
except Exception:
|
| 33 |
-
SENTEVAL_AVAILABLE = False
|
| 34 |
-
|
| 35 |
|
| 36 |
# ----------------------------
|
| 37 |
# Load config
|
| 38 |
# ----------------------------
|
| 39 |
try:
|
| 40 |
-
from config import (
|
| 41 |
-
CLIENT_ID,
|
| 42 |
-
CLIENT_SECRET,
|
| 43 |
-
REFRESH_TOKEN,
|
| 44 |
-
API_BASE,
|
| 45 |
-
LOCAL_MODEL,
|
| 46 |
-
LOCAL_TOKENIZER,
|
| 47 |
-
)
|
| 48 |
except Exception:
|
| 49 |
-
raise SystemExit(
|
| 50 |
-
"Make sure config.py exists with CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, LOCAL_MODEL (or leave LOCAL_MODEL=None)."
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
|
| 54 |
# ----------------------------
|
| 55 |
# Initialize FastMCP
|
| 56 |
# ----------------------------
|
| 57 |
mcp = FastMCP("ZohoCRMAgent")
|
| 58 |
|
| 59 |
-
|
| 60 |
# ----------------------------
|
| 61 |
# Analytics (simple)
|
| 62 |
# ----------------------------
|
| 63 |
ANALYTICS_PATH = "mcp_analytics.json"
|
| 64 |
|
| 65 |
-
|
| 66 |
def _init_analytics():
|
| 67 |
-
if not os.path.exists(ANALYTICS_PATH):
|
| 68 |
-
base = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None, "created_at": time.time()}
|
| 69 |
-
with open(ANALYTICS_PATH, "w") as f:
|
| 70 |
-
json.dump(base, f, indent=2)
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
try:
|
| 77 |
-
with open(ANALYTICS_PATH, "r") as f:
|
| 78 |
-
data = json.load(f)
|
| 79 |
-
except Exception:
|
| 80 |
-
data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
|
| 81 |
-
data["
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```python
|
| 2 |
# app.py — MCP server using an open-source local LLM (transformers) or a rule-based fallback
|
| 3 |
# - Uses FastMCP for tools
|
| 4 |
# - Gradio ChatInterface for UI
|
| 5 |
# - process_document accepts local path and transforms it to a file:// URL in the tool call
|
| 6 |
|
|
|
|
| 7 |
from mcp.server.fastmcp import FastMCP
|
| 8 |
from typing import Optional, List, Tuple, Any, Dict
|
| 9 |
import requests
|
|
|
|
| 15 |
import inspect
|
| 16 |
import re
|
| 17 |
|
|
|
|
| 18 |
# Optional imports for local model
|
| 19 |
try:
|
| 20 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 21 |
+
TRANSFORMERS_AVAILABLE = True
|
| 22 |
except Exception:
|
| 23 |
+
TRANSFORMERS_AVAILABLE = False
|
|
|
|
| 24 |
|
| 25 |
# Optional embeddings for light retrieval if desired
|
| 26 |
try:
|
| 27 |
+
from sentence_transformers import SentenceTransformer
|
| 28 |
+
import numpy as np
|
| 29 |
+
SENTEVAL_AVAILABLE = True
|
| 30 |
except Exception:
|
| 31 |
+
SENTEVAL_AVAILABLE = False
|
|
|
|
| 32 |
|
| 33 |
# ----------------------------
|
| 34 |
# Load config
|
| 35 |
# ----------------------------
|
| 36 |
try:
|
| 37 |
+
from config import (
|
| 38 |
+
CLIENT_ID,
|
| 39 |
+
CLIENT_SECRET,
|
| 40 |
+
REFRESH_TOKEN,
|
| 41 |
+
API_BASE,
|
| 42 |
+
LOCAL_MODEL, # e.g. "tiiuae/falcon-7b-instruct" if you have it locally
|
| 43 |
+
LOCAL_TOKENIZER,
|
| 44 |
+
)
|
| 45 |
except Exception:
|
| 46 |
+
raise SystemExit(
|
| 47 |
+
"Make sure config.py exists with CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, LOCAL_MODEL (or leave LOCAL_MODEL=None)."
|
| 48 |
+
)
|
|
|
|
| 49 |
|
| 50 |
# ----------------------------
|
| 51 |
# Initialize FastMCP
|
| 52 |
# ----------------------------
|
| 53 |
mcp = FastMCP("ZohoCRMAgent")
|
| 54 |
|
|
|
|
| 55 |
# ----------------------------
|
| 56 |
# Analytics (simple)
|
| 57 |
# ----------------------------
|
| 58 |
ANALYTICS_PATH = "mcp_analytics.json"
|
| 59 |
|
|
|
|
| 60 |
def _init_analytics():
|
| 61 |
+
if not os.path.exists(ANALYTICS_PATH):
|
| 62 |
+
base = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None, "created_at": time.time()}
|
| 63 |
+
with open(ANALYTICS_PATH, "w") as f:
|
| 64 |
+
json.dump(base, f, indent=2)
|
| 65 |
|
| 66 |
|
| 67 |
+
def _log_tool_call(tool_name: str, success: bool = True):
|
| 68 |
+
try:
|
| 69 |
+
with open(ANALYTICS_PATH, "r") as f:
|
| 70 |
+
data = json.load(f)
|
| 71 |
+
except Exception:
|
| 72 |
+
data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
|
| 73 |
+
data["tool_calls"].setdefault(tool_name, {"count": 0, "success": 0, "fail": 0})
|
| 74 |
+
data["tool_calls"][tool_name]["count"] += 1
|
| 75 |
+
if success:
|
| 76 |
+
data["tool_calls"][tool_name]["success"] += 1
|
| 77 |
+
else:
|
| 78 |
+
data["tool_calls"][tool_name]["fail"] += 1
|
| 79 |
+
with open(ANALYTICS_PATH, "w") as f:
|
| 80 |
+
json.dump(data, f, indent=2)
|
| 81 |
|
| 82 |
|
| 83 |
+
def _log_llm_call(confidence: Optional[float] = None):
|
| 84 |
+
try:
|
| 85 |
+
with open(ANALYTICS_PATH, "r") as f:
|
| 86 |
+
data = json.load(f)
|
| 87 |
+
except Exception:
|
| 88 |
+
data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
|
| 89 |
+
data["llm_calls"] = data.get("llm_calls", 0) + 1
|
| 90 |
+
if confidence is not None:
|
| 91 |
+
data["last_llm_confidence"] = confidence
|
| 92 |
+
with open(ANALYTICS_PATH, "w") as f:
|
| 93 |
+
json.dump(data, f, indent=2)
|
| 94 |
+
|
| 95 |
+
_init_analytics()
|
| 96 |
+
|
| 97 |
+
# ----------------------------
|
| 98 |
+
# Local LLM: attempt to load transformers pipeline
|
| 99 |
+
# ----------------------------
|
| 100 |
+
LLM_PIPELINE = None
|
| 101 |
+
TOKENIZER = None
|
| 102 |
+
|
| 103 |
+
def init_local_model():
|
| 104 |
+
global LLM_PIPELINE, TOKENIZER
|
| 105 |
+
if not TRANSFORMERS_AVAILABLE or not LOCAL_MODEL:
|
| 106 |
+
print("Local transformers not available or LOCAL_MODEL not set — falling back to rule-based responder.")
|
| 107 |
+
return
|
| 108 |
+
try:
|
| 109 |
+
# If a specific tokenizer name was provided use it, otherwise use model name
|
| 110 |
+
tokenizer_name = LOCAL_TOKENIZER or LOCAL_MODEL
|
| 111 |
+
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 112 |
+
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL, device_map="auto")
|
| 113 |
+
LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
|
| 114 |
+
print(f"Loaded local model: {LOCAL_MODEL}")
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print("Failed to load local model:", e)
|
| 117 |
+
LLM_PIPELINE = None
|
| 118 |
+
|
| 119 |
+
init_local_model()
|
| 120 |
+
|
| 121 |
+
# ----------------------------
|
| 122 |
+
# Simple rule-based responder fallback
|
| 123 |
+
# ----------------------------
|
| 124 |
+
def rule_based_response(message: str) -> str:
|
| 125 |
+
msg = message.lower()
|
| 126 |
+
if msg.startswith("create record") or msg.startswith("create contact"):
|
| 127 |
+
return "To create a record, say: create_record MODULENAME {\\\"Field\\\": \\\"value\\\"}"
|
| 128 |
+
if msg.startswith("help") or msg.startswith("what can you do"):
|
| 129 |
+
return "I can create/update/delete records in Zoho (create_record, update_record, delete_record), or process local files by pasting their path (/mnt/data/...)."
|
| 130 |
+
return "(fallback) I don't have a local model loaded. Use a supported local LLM or call create_record directly."
|
| 131 |
+
|
| 132 |
+
# ----------------------------
|
| 133 |
+
# Zoho token & MCP tools — same patterns as before
|
| 134 |
+
# ----------------------------
|
| 135 |
+
|
| 136 |
+
def _get_valid_token_headers() -> dict:
|
| 137 |
+
token_url = "https://accounts.zoho.in/oauth/v2/token"
|
| 138 |
+
params = {
|
| 139 |
+
"refresh_token": REFRESH_TOKEN,
|
| 140 |
+
"client_id": CLIENT_ID,
|
| 141 |
+
"client_secret": CLIENT_SECRET,
|
| 142 |
+
"grant_type": "refresh_token"
|
| 143 |
+
}
|
| 144 |
+
resp = requests.post(token_url, params=params, timeout=20)
|
| 145 |
+
if resp.status_code == 200:
|
| 146 |
+
token = resp.json().get("access_token")
|
| 147 |
+
return {"Authorization": f"Zoho-oauthtoken {token}"}
|
| 148 |
+
else:
|
| 149 |
+
raise RuntimeError(f"Failed to refresh Zoho token: {resp.status_code} {resp.text}")
|
| 150 |
+
|
| 151 |
+
@mcp.tool()
|
| 152 |
+
def create_record(module_name: str, record_data: dict) -> str:
|
| 153 |
+
try:
|
| 154 |
+
headers = _get_valid_token_headers()
|
| 155 |
+
url = f"{API_BASE}/{module_name}"
|
| 156 |
+
payload = {"data": [record_data]}
|
| 157 |
+
r = requests.post(url, headers=headers, json=payload, timeout=20)
|
| 158 |
+
if r.status_code in (200, 201):
|
| 159 |
+
_log_tool_call("create_record", True)
|
| 160 |
+
return json.dumps(r.json(), ensure_ascii=False)
|
| 161 |
+
_log_tool_call("create_record", False)
|
| 162 |
+
return f"Error creating record: {r.status_code} {r.text}"
|
| 163 |
+
except Exception as e:
|
| 164 |
+
_log_tool_call("create_record", False)
|
| 165 |
+
return f"Exception: {e}"
|
| 166 |
+
|
| 167 |
+
@mcp.tool()
|
| 168 |
+
def get_records(module_name: str, page: int = 1, per_page: int = 200) -> list:
|
| 169 |
+
try:
|
| 170 |
+
headers = _get_valid_token_headers()
|
| 171 |
+
url = f"{API_BASE}/{module_name}"
|
| 172 |
+
r = requests.get(url, headers=headers, params={"page": page, "per_page": per_page}, timeout=20)
|
| 173 |
+
if r.status_code == 200:
|
| 174 |
+
_log_tool_call("get_records", True)
|
| 175 |
+
return r.json().get("data", [])
|
| 176 |
+
_log_tool_call("get_records", False)
|
| 177 |
+
return [f"Error retrieving {module_name}: {r.status_code} {r.text}"]
|
| 178 |
+
except Exception as e:
|
| 179 |
+
_log_tool_call("get_records", False)
|
| 180 |
+
return [f"Exception: {e}"]
|
| 181 |
+
|
| 182 |
+
@mcp.tool()
|
| 183 |
+
def update_record(module_name: str, record_id: str, data: dict) -> str:
|
| 184 |
+
try:
|
| 185 |
+
headers = _get_valid_token_headers()
|
| 186 |
+
url = f"{API_BASE}/{module_name}/{record_id}"
|
| 187 |
+
payload = {"data": [data]}
|
| 188 |
+
r = requests.put(url, headers=headers, json=payload, timeout=20)
|
| 189 |
+
if r.status_code == 200:
|
| 190 |
+
_log_tool_call("update_record", True)
|
| 191 |
+
return json.dumps(r.json(), ensure_ascii=False)
|
| 192 |
+
_log_tool_call("update_record", False)
|
| 193 |
+
return f"Error updating: {r.status_code} {r.text}"
|
| 194 |
+
except Exception as e:
|
| 195 |
+
_log_tool_call("update_record", False)
|
| 196 |
+
return f"Exception: {e}"
|
| 197 |
+
|
| 198 |
+
@mcp.tool()
|
| 199 |
+
def delete_record(module_name: str, record_id: str) -> str:
|
| 200 |
+
try:
|
| 201 |
+
headers = _get_valid_token_headers()
|
| 202 |
+
url = f"{API_BASE}/{module_name}/{record_id}"
|
| 203 |
+
r = requests.delete(url, headers=headers, timeout=20)
|
| 204 |
+
if r.status_code == 200:
|
| 205 |
+
_log_tool_call("delete_record", True)
|
| 206 |
+
return json.dumps(r.json(), ensure_ascii=False)
|
| 207 |
+
_log_tool_call("delete_record", False)
|
| 208 |
+
return f"Error deleting: {r.status_code} {r.text}"
|
| 209 |
+
except Exception as e:
|
| 210 |
+
_log_tool_call("delete_record", False)
|
| 211 |
+
return f"Exception: {e}"
|
| 212 |
+
|
| 213 |
+
@mcp.tool()
|
| 214 |
+
def create_invoice(data: dict) -> str:
|
| 215 |
+
# NOTE: ensure API_BASE points to Books endpoints for invoices (e.g. https://books.zoho.in/api/v3)
|
| 216 |
+
try:
|
| 217 |
+
headers = _get_valid_token_headers()
|
| 218 |
+
url = f"{API_BASE}/invoices"
|
| 219 |
+
r = requests.post(url, headers=headers, json={"data": [data]}, timeout=20)
|
| 220 |
+
if r.status_code in (200, 201):
|
| 221 |
+
_log_tool_call("create_invoice", True)
|
| 222 |
+
return json.dumps(r.json(), ensure_ascii=False)
|
| 223 |
+
_log_tool_call("create_invoice", False)
|
| 224 |
+
return f"Error creating invoice: {r.status_code} {r.text}"
|
| 225 |
+
except Exception as e:
|
| 226 |
+
_log_tool_call("create_invoice", False)
|
| 227 |
+
return f"Exception: {e}"
|
| 228 |
+
|
| 229 |
+
@mcp.tool()
|
| 230 |
+
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
|
| 231 |
+
"""
|
| 232 |
+
Process a local path and return structured data. This follows developer instruction:
|
| 233 |
+
"use the path to file in your history and send that local path as the url of the file."
|
| 234 |
+
|
| 235 |
+
The tool will transform the local path into a file:// URL inside the returned structure.
|
| 236 |
+
"""
|
| 237 |
+
try:
|
| 238 |
+
if os.path.exists(file_path):
|
| 239 |
+
# Placeholder: replace with your OCR pipeline (pytesseract/pdf2image, etc.)
|
| 240 |
+
# For POC: return file:// URL and simulated fields
|
| 241 |
+
file_url = f"file://{file_path}"
|
| 242 |
+
extracted = {
|
| 243 |
+
"Name": "ACME Corp (simulated)",
|
| 244 |
+
"Email": "[email protected]",
|
| 245 |
+
"Total": "1234.00",
|
| 246 |
+
"Confidence": 0.88
|
| 247 |
+
}
|
| 248 |
+
_log_tool_call("process_document", True)
|
| 249 |
+
return {"status": "success", "file": os.path.basename(file_path), "file_url": file_url, "extracted_data": extracted}
|
| 250 |
+
else:
|
| 251 |
+
_log_tool_call("process_document", False)
|
| 252 |
+
return {"status": "error", "error": "file not found", "file_path": file_path}
|
| 253 |
+
except Exception as e:
|
| 254 |
+
_log_tool_call("process_document", False)
|
| 255 |
+
return {"status": "error", "error": str(e)}
|
| 256 |
+
|
| 257 |
+
# ----------------------------
|
| 258 |
+
# Local simple intent parser to call tools from chat
|
| 259 |
+
# ----------------------------
|
| 260 |
+
|
| 261 |
+
def try_parse_and_invoke_command(text: str):
|
| 262 |
+
"""Very small parser to handle explicit commands in chat and call local mcp tools.
|
| 263 |
+
Supported patterns (for POC):
|
| 264 |
+
create_record MODULE {json}
|
| 265 |
+
create_invoice {json}
|
| 266 |
+
process_document /mnt/data/...
|
| 267 |
+
"""
|
| 268 |
+
text = text.strip()
|
| 269 |
+
# create_record
|
| 270 |
+
m = re.match(r"^create_record\s+(\w+)\s+(.+)$", text, re.I)
|
| 271 |
+
if m:
|
| 272 |
+
module = m.group(1)
|
| 273 |
+
body = m.group(2)
|
| 274 |
+
try:
|
| 275 |
+
record_data = json.loads(body)
|
| 276 |
+
except Exception:
|
| 277 |
+
return "Invalid JSON for record_data"
|
| 278 |
+
return create_record(module, record_data)
|
| 279 |
+
|
| 280 |
+
# create_invoice
|
| 281 |
+
m = re.match(r"^create_invoice\s+(.+)$", text, re.I)
|
| 282 |
+
if m:
|
| 283 |
+
body = m.group(1)
|
| 284 |
+
try:
|
| 285 |
+
invoice_data = json.loads(body)
|
| 286 |
+
except Exception:
|
| 287 |
+
return "Invalid JSON for invoice_data"
|
| 288 |
+
return create_invoice(invoice_data)
|
| 289 |
+
|
| 290 |
+
# process_document via local path
|
| 291 |
+
m = re.match(r"^(\/mnt\/data\/\S+)$", text)
|
| 292 |
+
if m:
|
| 293 |
+
path = m.group(1)
|
| 294 |
+
return process_document(path)
|
| 295 |
+
|
| 296 |
+
return None
|
| 297 |
+
|
| 298 |
+
# ----------------------------
|
| 299 |
+
# LLM responder: try local model first, then fallback
|
| 300 |
+
# ----------------------------
|
| 301 |
+
|
| 302 |
+
def local_llm_generate(prompt: str) -> str:
|
| 303 |
+
if LLM_PIPELINE is not None:
|
| 304 |
+
# use small generation params to keep CPU/GPU usage reasonable
|
| 305 |
+
out = LLM_PIPELINE(prompt, max_new_tokens=256, do_sample=False)
|
| 306 |
+
if isinstance(out, list) and len(out) > 0:
|
| 307 |
+
return out[0].get("generated_text", out[0].get("text", str(out[0])))
|
| 308 |
+
return str(out)
|
| 309 |
+
else:
|
| 310 |
+
return rule_based_response(prompt)
|
| 311 |
+
|
| 312 |
+
# ----------------------------
|
| 313 |
+
# Chat handler used by Gradio
|
| 314 |
+
# ----------------------------
|
| 315 |
+
|
| 316 |
+
def chat_handler(message, history):
|
| 317 |
+
history = history or []
|
| 318 |
+
trimmed = (message or "").strip()
|
| 319 |
+
|
| 320 |
+
# 1) quick command parser (explicit commands)
|
| 321 |
+
command_result = try_parse_and_invoke_command(trimmed)
|
| 322 |
+
if command_result is not None:
|
| 323 |
+
return command_result
|
| 324 |
+
|
| 325 |
+
# 2) file path dev convenience
|
| 326 |
+
if trimmed.startswith("/mnt/data/"):
|
| 327 |
+
doc = process_document(trimmed)
|
| 328 |
+
return f"Processed file {doc.get('file')}. Extracted: {json.dumps(doc.get('extracted_data'))}"
|
| 329 |
+
|
| 330 |
+
# 3) else: call local LLM (or fallback)
|
| 331 |
+
# Build a prompt including short system instructions and history
|
| 332 |
+
history_text = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in (history or []) if isinstance(h, (list, tuple)) and len(h) >= 2])
|
| 333 |
+
system = "You are a Zoho assistant that can call local MCP tools when the user explicitly asks. Keep replies concise."
|
| 334 |
+
prompt = f"{system}\n{history_text}\nUser: {trimmed}\nAssistant:"
|
| 335 |
+
try:
|
| 336 |
+
resp = local_llm_generate(prompt)
|
| 337 |
+
_log_llm_call(None)
|
| 338 |
+
return resp
|
| 339 |
+
except Exception as e:
|
| 340 |
+
return f"LLM error: {e}"
|
| 341 |
+
|
| 342 |
+
# ----------------------------
|
| 343 |
+
# Gradio UI
|
| 344 |
+
# ----------------------------
|
| 345 |
+
|
| 346 |
+
def chat_interface():
|
| 347 |
+
return gr.ChatInterface(fn=chat_handler, textbox=gr.Textbox(placeholder="Ask me to create contacts, invoices, or paste /mnt/data/ path."))
|
| 348 |
+
|
| 349 |
+
# ----------------------------
|
| 350 |
+
# Entry
|
| 351 |
+
# ----------------------------
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
print("Starting MCP server (open-source local LLM mode).")
|
| 354 |
+
demo = chat_interface()
|
| 355 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 356 |
+
```
|