Update app.py
Browse files
app.py
CHANGED
|
@@ -1,75 +1,53 @@
|
|
| 1 |
-
import json
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# TODO: improve layout (columns, sidebar, forms)
|
| 6 |
-
# st.set_page_config(layout='wide')
|
| 7 |
-
|
| 8 |
-
|
| 9 |
st.title('Question Answering example')
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
##########################################################
|
| 13 |
st.subheader('1. A simple question (extractive, closed domain)')
|
| 14 |
-
##########################################################
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
WIKI_URL = 'https://en.wikipedia.org/w/api.php'
|
| 18 |
-
WIKI_QUERY = "?format=json&action=query&prop=extracts&explaintext=1"
|
| 19 |
-
WIKI_BERT = "&titles=BERT_(language_model)"
|
| 20 |
-
WIKI_METHOD = 'GET'
|
| 21 |
-
|
| 22 |
response = req.request(WIKI_METHOD, f'{WIKI_URL}{WIKI_QUERY}{WIKI_BERT}')
|
| 23 |
resp_json = json.loads(response.content.decode("utf-8"))
|
| 24 |
wiki_bert = resp_json['query']['pages']['62026514']['extract']
|
| 25 |
-
paragraph =
|
| 26 |
-
|
| 27 |
-
written_passage = st.text_area(
|
| 28 |
-
'Paragraph used for QA (you can also edit, or copy/paste new content)',
|
| 29 |
-
paragraph,
|
| 30 |
-
height=250
|
| 31 |
-
)
|
| 32 |
if written_passage:
|
| 33 |
paragraph = written_passage
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
written_question = st.text_input(
|
| 39 |
-
'Question used for QA (you can also edit, and experiment with the answers)',
|
| 40 |
-
question
|
| 41 |
-
)
|
| 42 |
if written_question:
|
| 43 |
question = written_question
|
| 44 |
-
|
| 45 |
-
QA_URL = "https://api-inference.huggingface.co/models/deepset/roberta-base-squad2"
|
| 46 |
-
QA_METHOD = 'POST'
|
| 47 |
-
|
| 48 |
-
|
| 49 |
if st.button('Run QA inference (get answer prediction)'):
|
| 50 |
if paragraph and question:
|
| 51 |
inputs = {'question': question, 'context': paragraph}
|
| 52 |
payload = json.dumps(inputs)
|
| 53 |
prediction = req.request(QA_METHOD, QA_URL, data=payload)
|
| 54 |
answer = json.loads(prediction.content.decode("utf-8"))
|
| 55 |
-
# >>> answer structure:
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
else:
|
| 74 |
-
st.write('Write some passage of text and a question')
|
| 75 |
-
|
|
|
|
| 1 |
+
import json; import streamlit as st; import requests as req; from transformers import pipeline
|
| 2 |
+
WIKI_URL = 'https://en.wikipedia.org/w/api.php'; WIKI_BERT = "&titles=BERT_(language_model)"
|
| 3 |
+
WIKI_QUERY = "?format=json&action=query&prop=extracts&explaintext=1"; WIKI_METHOD = 'GET'
|
| 4 |
+
pipe_exqa = pipeline("question-answering") #, model="distilbert-base-cased-distilled-squad"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
st.title('Question Answering example')
|
|
|
|
|
|
|
|
|
|
| 6 |
st.subheader('1. A simple question (extractive, closed domain)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
response = req.request(WIKI_METHOD, f'{WIKI_URL}{WIKI_QUERY}{WIKI_BERT}')
|
| 8 |
resp_json = json.loads(response.content.decode("utf-8"))
|
| 9 |
wiki_bert = resp_json['query']['pages']['62026514']['extract']
|
| 10 |
+
paragraph = wiki_bert
|
| 11 |
+
par_text = 'Paragraph used for QA (you can also edit, or copy/paste new content)'
|
| 12 |
+
written_passage = st.text_area(par_text, paragraph, height=250)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
if written_passage:
|
| 14 |
paragraph = written_passage
|
| 15 |
+
question = 'How many attention heads does Bert have?' # question = 'How many languages does bert understand?'
|
| 16 |
+
query_text = 'Question used for QA (you can also edit, and experiment with the answers)'
|
| 17 |
+
written_question = st.text_input(query_text, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if written_question:
|
| 19 |
question = written_question
|
| 20 |
+
QA_URL = "https://api-inference.huggingface.co/models/deepset/roberta-base-squad2"; QA_METHOD = 'POST'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
if st.button('Run QA inference (get answer prediction)'):
|
| 22 |
if paragraph and question:
|
| 23 |
inputs = {'question': question, 'context': paragraph}
|
| 24 |
payload = json.dumps(inputs)
|
| 25 |
prediction = req.request(QA_METHOD, QA_URL, data=payload)
|
| 26 |
answer = json.loads(prediction.content.decode("utf-8"))
|
| 27 |
+
# >>> answer structure: # { "answer": "over 70", "score": 0.240, "start": 35, "end": 62 }
|
| 28 |
+
answer_dict = dict(answer) # st.write(answer_dict)
|
| 29 |
+
print(answer_dict)
|
| 30 |
+
if "answer" in answer_dict.keys():
|
| 31 |
+
answer_span, answer_score = answer_dict["answer"], answer_dict["score"]
|
| 32 |
+
st.write(f'Answer: **{answer_span}**')
|
| 33 |
+
start_par, stop_para = max(0, answer_dict["start"]-86), min(answer_dict["end"]+90, len(paragraph))
|
| 34 |
+
answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
|
| 35 |
+
st.write(f'Answer context (and score): ... _{answer_context}_ ... (score: {format(answer_score, ".3f")})')
|
| 36 |
+
st.write(f'Answer JSON: '); st.write(answer)
|
| 37 |
+
else:
|
| 38 |
+
try:
|
| 39 |
+
qa_result = pipe_exqa(question=question, context=paragraph)
|
| 40 |
+
except Exception as e:
|
| 41 |
+
qa_result = str(e)
|
| 42 |
+
|
| 43 |
+
if "answer" in qa_result.keys():
|
| 44 |
+
answer_span, answer_score = qa_result["answer"], qa_result["score"]
|
| 45 |
+
st.write(f'Answer: **{answer_span}**')
|
| 46 |
+
start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
|
| 47 |
+
answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
|
| 48 |
+
st.write(f'Answer context (and score): ... _{answer_context}_ ... (score: {format(answer_score, ".3f")})')
|
| 49 |
+
|
| 50 |
+
st.write(f'Answer JSON: '); st.write(qa_result)
|
| 51 |
else:
|
| 52 |
+
st.write('Write some passage of text and a question'); st.stop()
|
| 53 |
+
# x = st.slider('Select a value'); st.write(x, 'squared is', x * x)
|