Spaces:
Paused
Paused
File size: 15,162 Bytes
a584f85 85de883 a584f85 85de883 a584f85 85de883 a584f85 85de883 a584f85 85de883 a584f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
"""
Feedback Loop for learning from user interactions
This module collects and analyzes user feedback to improve query understanding
and schema mapping over time.
"""
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime, timedelta, timezone
from collections import defaultdict, Counter
import json
import logging
from pathlib import Path
from schema_translator.models import (
QueryFeedback,
SemanticQueryPlan,
QueryIntent
)
logger = logging.getLogger(__name__)
class FeedbackLoop:
"""Collects and analyzes user feedback to improve the system."""
def __init__(self, feedback_file: Optional[Path] = None):
"""Initialize feedback loop.
Args:
feedback_file: Path to store feedback (default: data/feedback.jsonl)
"""
self.feedback_file = feedback_file or Path("data/feedback.jsonl")
self.feedback_file.parent.mkdir(parents=True, exist_ok=True)
# In-memory cache
self.feedback_cache: List[QueryFeedback] = []
self.query_patterns: Dict[str, int] = defaultdict(int)
self.failure_patterns: Dict[str, List[str]] = defaultdict(list)
# Load existing feedback
self._load_feedback()
logger.info(f"FeedbackLoop initialized with {len(self.feedback_cache)} feedback entries")
def submit_feedback(
self,
query_text: str,
semantic_plan: SemanticQueryPlan,
feedback_type: str,
feedback_text: Optional[str] = None,
correct_result: Optional[Any] = None
) -> QueryFeedback:
"""Submit user feedback on a query result.
Args:
query_text: Original natural language query
semantic_plan: Semantic plan that was used
feedback_type: Type of feedback (good, incorrect, missing)
feedback_text: Optional user comment
correct_result: What the correct result should be
Returns:
QueryFeedback object
"""
feedback = QueryFeedback(
query_text=query_text,
semantic_plan=semantic_plan,
feedback_type=feedback_type,
feedback_text=feedback_text,
correct_result=correct_result
)
# Store in cache
self.feedback_cache.append(feedback)
# Update patterns
if feedback_type == "incorrect" or feedback_type == "missing":
self.failure_patterns[feedback_type].append(query_text)
# Track query patterns
intent_str = str(semantic_plan.intent)
self.query_patterns[intent_str] += 1
# Persist to disk
self._save_feedback(feedback)
logger.info(f"Feedback received: {feedback_type} for query '{query_text}'")
return feedback
def get_feedback_summary(
self,
days: int = 30
) -> Dict[str, Any]:
"""Get summary of feedback received.
Args:
days: Number of days to include in summary
Returns:
Summary statistics
"""
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days)
recent_feedback = [
f for f in self.feedback_cache
if f.timestamp >= cutoff_date
]
if not recent_feedback:
return {
"total_feedback": 0,
"period_days": days,
"feedback_types": {},
"most_problematic_queries": []
}
# Count by type
type_counts = Counter(f.feedback_type for f in recent_feedback)
# Find most problematic queries (incorrect/missing)
problem_queries = [
f.query_text for f in recent_feedback
if f.feedback_type in ["incorrect", "missing"]
]
problem_query_counts = Counter(problem_queries)
return {
"total_feedback": len(recent_feedback),
"period_days": days,
"feedback_types": dict(type_counts),
"most_problematic_queries": problem_query_counts.most_common(10),
"success_rate": (type_counts.get("good", 0) / len(recent_feedback) * 100
if recent_feedback else 0)
}
def analyze_failure_patterns(self) -> Dict[str, Any]:
"""Analyze patterns in failed queries.
Returns:
Analysis of common failure patterns
"""
if not self.failure_patterns["incorrect"] and not self.failure_patterns["missing"]:
return {
"total_failures": 0,
"common_issues": [],
"suggested_improvements": []
}
all_failures = (
self.failure_patterns["incorrect"] +
self.failure_patterns["missing"]
)
# Count failure frequency
failure_counts = Counter(all_failures)
# Analyze common terms in failed queries
all_words = []
for query in all_failures:
all_words.extend(query.lower().split())
word_counts = Counter(all_words)
# Remove common words
common_words = {"the", "a", "an", "and", "or", "but", "in", "on", "at", "to", "for"}
common_terms = [
(word, count) for word, count in word_counts.most_common(20)
if word not in common_words and len(word) > 2
]
# Generate suggestions
suggestions = []
if common_terms:
suggestions.append(
f"Consider mapping concepts for: {', '.join(word for word, _ in common_terms[:5])}"
)
if failure_counts.most_common(1):
most_common = failure_counts.most_common(1)[0]
suggestions.append(
f"Query '{most_common[0]}' failed {most_common[1]} times - needs attention"
)
return {
"total_failures": len(all_failures),
"unique_failures": len(failure_counts),
"most_common_failures": failure_counts.most_common(5),
"common_terms": common_terms[:10],
"suggested_improvements": suggestions
}
def get_query_patterns(self, top_n: int = 10) -> List[Tuple[str, int]]:
"""Get most common query patterns.
Args:
top_n: Number of top patterns to return
Returns:
List of (intent, count) tuples
"""
return sorted(
self.query_patterns.items(),
key=lambda x: x[1],
reverse=True
)[:top_n]
def suggest_new_concepts(
self,
min_occurrences: int = 3
) -> List[Dict[str, Any]]:
"""Suggest new concepts to add based on failed queries.
Args:
min_occurrences: Minimum times a term must appear
Returns:
List of suggested concepts with context
"""
# Analyze words in failed queries
all_failures = (
self.failure_patterns["incorrect"] +
self.failure_patterns["missing"]
)
if not all_failures:
return []
# Extract potential concept names
all_words = []
for query in all_failures:
words = query.lower().split()
all_words.extend(words)
word_counts = Counter(all_words)
# Filter to meaningful terms
common_words = {
"the", "a", "an", "and", "or", "but", "in", "on", "at", "to",
"for", "with", "show", "find", "get", "list", "all", "me"
}
suggestions = []
for word, count in word_counts.most_common(50):
if (count >= min_occurrences and
word not in common_words and
len(word) > 2):
# Find example queries containing this term
examples = [
q for q in all_failures[:5]
if word in q.lower()
]
suggestions.append({
"term": word,
"occurrences": count,
"example_queries": examples[:3]
})
return suggestions[:10]
def get_improvement_recommendations(self) -> Dict[str, Any]:
"""Get comprehensive improvement recommendations.
Returns:
Recommendations for system improvements
"""
feedback_summary = self.get_feedback_summary(days=30)
failure_analysis = self.analyze_failure_patterns()
concept_suggestions = self.suggest_new_concepts(min_occurrences=2)
query_patterns = self.get_query_patterns(top_n=10)
recommendations = {
"overall_health": "good" if feedback_summary.get("success_rate", 0) > 80 else "needs_improvement",
"feedback_summary": feedback_summary,
"failure_analysis": failure_analysis,
"new_concept_suggestions": concept_suggestions,
"popular_query_patterns": query_patterns,
"action_items": []
}
# Generate action items
if feedback_summary.get("success_rate", 0) < 80:
recommendations["action_items"].append(
"Success rate below 80% - review failed queries and improve mappings"
)
if len(concept_suggestions) > 0:
recommendations["action_items"].append(
f"Add {len(concept_suggestions)} new concepts based on user queries"
)
if failure_analysis.get("total_failures", 0) > 10:
recommendations["action_items"].append(
"High failure count - focus on most common failure patterns"
)
return recommendations
def _load_feedback(self):
"""Load feedback from disk."""
if not self.feedback_file.exists():
return
try:
with open(self.feedback_file, 'r') as f:
for line in f:
if line.strip():
data = json.loads(line)
# Reconstruct feedback object
feedback = QueryFeedback(**data)
self.feedback_cache.append(feedback)
# Update patterns
intent_str = str(feedback.semantic_plan.intent)
self.query_patterns[intent_str] += 1
if feedback.feedback_type in ["incorrect", "missing"]:
self.failure_patterns[feedback.feedback_type].append(
feedback.query_text
)
except Exception as e:
logger.error(f"Error loading feedback: {e}", exc_info=True)
def _save_feedback(self, feedback: QueryFeedback):
"""Save single feedback entry to disk.
Args:
feedback: Feedback to save
"""
try:
# Convert to dict for JSON serialization
data = feedback.model_dump(mode='json')
with open(self.feedback_file, 'a') as f:
f.write(json.dumps(data) + '\n')
except Exception as e:
logger.error(f"Error saving feedback: {e}", exc_info=True)
def export_feedback(
self,
output_file: Path,
days: Optional[int] = None
) -> int:
"""Export feedback to a file.
Args:
output_file: Path to export file
days: Optional number of days to include (None = all)
Returns:
Number of feedback entries exported
"""
feedback_to_export = self.feedback_cache
if days:
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days)
feedback_to_export = [
f for f in feedback_to_export
if f.timestamp >= cutoff_date
]
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file, 'w') as f:
for feedback in feedback_to_export:
data = feedback.model_dump(mode='json')
f.write(json.dumps(data, indent=2) + '\n')
logger.info(f"Exported {len(feedback_to_export)} feedback entries to {output_file}")
return len(feedback_to_export)
def clear_old_feedback(self, days: int = 90) -> int:
"""Remove feedback older than specified days.
Args:
days: Keep feedback newer than this many days
Returns:
Number of entries removed
"""
cutoff_date = datetime.now(timezone.utc) - timedelta(days=days)
old_count = len(self.feedback_cache)
self.feedback_cache = [
f for f in self.feedback_cache
if f.timestamp >= cutoff_date
]
removed = old_count - len(self.feedback_cache)
# Rebuild patterns
self.query_patterns.clear()
self.failure_patterns.clear()
for feedback in self.feedback_cache:
intent_str = str(feedback.semantic_plan.intent)
self.query_patterns[intent_str] += 1
if feedback.feedback_type in ["incorrect", "missing"]:
self.failure_patterns[feedback.feedback_type].append(
feedback.query_text
)
# Rewrite file
if removed > 0:
self.feedback_file.unlink(missing_ok=True)
for feedback in self.feedback_cache:
self._save_feedback(feedback)
logger.info(f"Removed {removed} old feedback entries")
return removed
def get_statistics(self) -> Dict[str, Any]:
"""Get overall feedback statistics.
Returns:
Statistics dictionary
"""
if not self.feedback_cache:
return {
"total_feedback": 0,
"feedback_by_type": {},
"average_age_days": 0,
"oldest_feedback": None,
"newest_feedback": None
}
type_counts = Counter(f.feedback_type for f in self.feedback_cache)
now = datetime.now(timezone.utc)
ages = [(now - f.timestamp).days for f in self.feedback_cache]
return {
"total_feedback": len(self.feedback_cache),
"feedback_by_type": dict(type_counts),
"average_age_days": sum(ages) / len(ages) if ages else 0,
"oldest_feedback": min(f.timestamp for f in self.feedback_cache),
"newest_feedback": max(f.timestamp for f in self.feedback_cache),
"unique_queries": len(set(f.query_text for f in self.feedback_cache))
}
|