test-openai / app.py
Raphael Glon
wip
a25030f unverified
# Copied/Adapted from https://huggingface.co/spaces/akhaliq/MobileLLM-Pro
import spaces
import logging
import os
import re
import threading
from typing import List, Tuple, Dict
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import login
MODEL_ID = "openai/gpt-oss-20b"
logging.basicConfig(level=logging.DEBUG)
LOG = logging.getLogger(__name__)
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.7
TOP_P = 0.95
ANALYSIS_PATTERN = analysis_match = re.compile(r'^(.*)assistantfinal', flags=re.DOTALL)
# --- Silent Hub auth via env/Space Secret (no UI) ---
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
if HF_TOKEN:
try:
login(token=HF_TOKEN)
except Exception:
pass # stay silent
# Globals so we only load once
_tokenizer = None
_model = None
_device = None
def _ensure_loaded():
LOG.info("Loading model and tokenizer")
global _tokenizer, _model, _device
if _tokenizer is not None and _model is not None:
return
_tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID, trust_remote_code=True
)
_model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
device_map="auto" if torch.cuda.is_available() else None,
)
if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None:
_tokenizer.pad_token = _tokenizer.eos_token
_model.eval()
_device = next(_model.parameters()).device
_ensure_loaded()
LOG.info("DEVICE %s", _device)
def _history_to_messages(history: List[Tuple[str, str]]) -> List[Dict[str, str]]:
msgs: List[Dict[str, str]] = []
for user_msg, bot_msg in history:
if user_msg:
msgs.append({"role": "user", "content": user_msg})
if bot_msg:
msgs.append({"role": "assistant", "content": bot_msg})
return msgs
@spaces.GPU(duration=120)
def generate_stream(message: str, history: List[Tuple[str, str]]):
"""
Minimal streaming chat function for gr.ChatInterface.
Uses instruct chat template. No token UI. No extra controls.
"""
# FIXME: check the memory footprint doing so. We should rather do this before the spaces wrapper...
# _ensure_loaded()
messages = _history_to_messages(history) + [{"role": "user", "content": message}]
inputs = _tokenizer.apply_chat_template(
messages,
return_tensors="pt",
add_generation_prompt=True,
)
input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs
input_ids = input_ids.to(_device)
# IMPORTANT: don't stream the prompt (prevents system/user text from appearing)
streamer = TextIteratorStreamer(
_tokenizer,
skip_special_tokens=True,
skip_prompt=True, # <-- key fix
)
gen_kwargs = dict(
input_ids=input_ids,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=TEMPERATURE > 0.0,
temperature=float(TEMPERATURE),
top_p=float(TOP_P),
pad_token_id=_tokenizer.pad_token_id,
eos_token_id=_tokenizer.eos_token_id,
streamer=streamer,
)
thread = threading.Thread(target=_model.generate, kwargs=gen_kwargs)
thread.start()
analysis = ""
output = ""
for new_text in streamer:
output += new_text
if not analysis:
m = ANALYSIS_PATTERN.match(output)
if m:
analysis = re.sub(r'^analysis\s*', '', m.group(1))
output = ""
LOG.info("NEW TEXT: %s, OUTPUT: %s", new_text, output.encode())
if not analysis:
answer = f"Analysis:\n{output}"
else:
answer = f"Analysis:\n{analysis}\nAnswer:\n{output}"
yield answer
with gr.Blocks(title="OpenAI GPT-OSS 20B Chat") as demo:
gr.Markdown(
"""
# Chat
Streaming chat with openai/gpt-oss-20b (instruct)
""")
gr.ChatInterface(
fn=generate_stream,
chatbot=gr.Chatbot(height=420, label="OpenAI"),
title=None, # header handled by Markdown above
description=None,
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))