Spaces:
Sleeping
Sleeping
Onur Çopur
commited on
Commit
·
0647d62
1
Parent(s):
8880ccb
add dinov3 and dinov2 with registers
Browse files- .gitignore +7 -1
- CLAUDE.md +203 -0
- embeddings.py +278 -1
- patch_attention.py +238 -2
.gitignore
CHANGED
|
@@ -108,4 +108,10 @@ jspm_packages/
|
|
| 108 |
|
| 109 |
# temporary folders
|
| 110 |
tmp/
|
| 111 |
-
temp/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
# temporary folders
|
| 110 |
tmp/
|
| 111 |
+
temp/
|
| 112 |
+
*.png
|
| 113 |
+
*.jpg
|
| 114 |
+
*.jpeg
|
| 115 |
+
*.gif
|
| 116 |
+
*.svg
|
| 117 |
+
*.mp4
|
CLAUDE.md
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CLAUDE.md
|
| 2 |
+
|
| 3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This is an AI-powered tattoo search engine that combines visual similarity search with image captioning. Users upload a tattoo image, and the system finds visually similar tattoos from across the web using multi-model embeddings and multi-platform search.
|
| 8 |
+
|
| 9 |
+
**Tech Stack**: FastAPI, PyTorch, HuggingFace Transformers, OpenCLIP, DINOv2, SigLIP
|
| 10 |
+
|
| 11 |
+
**Deployment**: Dockerized application designed for HuggingFace Spaces (GPU recommended)
|
| 12 |
+
|
| 13 |
+
## Development Commands
|
| 14 |
+
|
| 15 |
+
### Running the Application
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
# Local development
|
| 19 |
+
python app.py
|
| 20 |
+
|
| 21 |
+
# Docker build and run
|
| 22 |
+
docker build -t tattoo-search .
|
| 23 |
+
docker run -p 7860:7860 --env-file .env tattoo-search
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
### Environment Setup
|
| 27 |
+
|
| 28 |
+
Required environment variable:
|
| 29 |
+
- `HF_TOKEN`: HuggingFace API token (required for GLM-4.5V captioning via Novita provider)
|
| 30 |
+
|
| 31 |
+
Create `.env` file:
|
| 32 |
+
```
|
| 33 |
+
HF_TOKEN=your_token_here
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### Testing Endpoints
|
| 37 |
+
|
| 38 |
+
```bash
|
| 39 |
+
# Health check
|
| 40 |
+
curl http://localhost:7860/health
|
| 41 |
+
|
| 42 |
+
# Get available models
|
| 43 |
+
curl http://localhost:7860/models
|
| 44 |
+
|
| 45 |
+
# Search with image
|
| 46 |
+
curl -X POST http://localhost:7860/search \
|
| 47 |
+
-F "[email protected]" \
|
| 48 |
+
-F "embedding_model=clip" \
|
| 49 |
+
-F "include_patch_attention=false"
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## Architecture
|
| 53 |
+
|
| 54 |
+
### Core Pipeline Flow
|
| 55 |
+
|
| 56 |
+
1. **Image Upload** → FastAPI endpoint (`/search` in main.py)
|
| 57 |
+
2. **Caption Generation** → GLM-4.5V via HuggingFace InferenceClient (Novita provider)
|
| 58 |
+
3. **Multi-Platform Search** → SearchEngineManager coordinates searches across Pinterest, Reddit, Instagram
|
| 59 |
+
4. **URL Validation** → URLValidator filters valid/accessible images
|
| 60 |
+
5. **Embedding Extraction** → Selected model (CLIP/DINOv2/SigLIP) encodes query + candidates
|
| 61 |
+
6. **Similarity Computation** → Cosine similarity ranking in parallel
|
| 62 |
+
7. **Optional Patch Analysis** → PatchAttentionAnalyzer for detailed visual correspondence
|
| 63 |
+
|
| 64 |
+
### Key Components
|
| 65 |
+
|
| 66 |
+
**main.py - TattooSearchEngine Class**
|
| 67 |
+
- Main orchestration class that ties all components together
|
| 68 |
+
- `generate_caption()`: Uses HuggingFace InferenceClient with GLM-4.5V model
|
| 69 |
+
- `search_images()`: Delegates to SearchEngineManager with caching
|
| 70 |
+
- `download_and_process_image()`: Parallel image download and similarity computation
|
| 71 |
+
- `compute_similarity()`: ThreadPoolExecutor for concurrent processing with early stopping
|
| 72 |
+
|
| 73 |
+
**embeddings.py - Model Abstraction**
|
| 74 |
+
- `EmbeddingModel`: Abstract base class defining interface
|
| 75 |
+
- `CLIPEmbedding`: OpenAI CLIP ViT-B/32 (default)
|
| 76 |
+
- `DINOv2Embedding`: Meta's self-supervised vision transformer
|
| 77 |
+
- `SigLIPEmbedding`: Google's improved CLIP-like model
|
| 78 |
+
- `EmbeddingModelFactory`: Factory pattern for model instantiation with fallback
|
| 79 |
+
- All models support both global image embeddings and patch-level features
|
| 80 |
+
|
| 81 |
+
**search_engines/ - Multi-Platform Search**
|
| 82 |
+
- `SearchEngineManager`: Coordinates parallel searches across platforms with fallback strategies
|
| 83 |
+
- `BaseSearchEngine`: Abstract interface for platform-specific engines
|
| 84 |
+
- Platform implementations: PinterestSearchEngine, RedditSearchEngine, InstagramSearchEngine
|
| 85 |
+
- `SearchResult` and `ImageResult`: Data classes for structured results
|
| 86 |
+
- Includes intelligent query simplification for fallback searches
|
| 87 |
+
|
| 88 |
+
**patch_attention.py - Visual Correspondence**
|
| 89 |
+
- `PatchAttentionAnalyzer`: Computes patch-level attention matrices between images
|
| 90 |
+
- `compute_patch_similarities()`: Extracts patch features and computes attention
|
| 91 |
+
- `visualize_attention_heatmap()`: Creates matplotlib visualizations as base64 PNG
|
| 92 |
+
- Returns attention matrices showing which image regions correspond best
|
| 93 |
+
|
| 94 |
+
**utils/ - Supporting Utilities**
|
| 95 |
+
- `SearchCache`: In-memory LRU cache with TTL for search results
|
| 96 |
+
- `URLValidator`: Concurrent URL validation to filter broken/inaccessible images
|
| 97 |
+
|
| 98 |
+
### Model Selection Logic
|
| 99 |
+
|
| 100 |
+
The search engine supports dynamic model switching via `get_search_engine()`:
|
| 101 |
+
- Global singleton pattern with lazy initialization
|
| 102 |
+
- Models are swapped only when a different embedding model is requested
|
| 103 |
+
- Each model implements both global pooling and patch-level encoding
|
| 104 |
+
|
| 105 |
+
### Search Strategy
|
| 106 |
+
|
| 107 |
+
SearchEngineManager uses a tiered approach:
|
| 108 |
+
1. Primary platforms (Pinterest, Reddit) searched first
|
| 109 |
+
2. If results < threshold, try additional platforms (Instagram)
|
| 110 |
+
3. If still insufficient, simplify query and retry
|
| 111 |
+
4. All platform searches run concurrently via ThreadPoolExecutor
|
| 112 |
+
|
| 113 |
+
### Caching Strategy
|
| 114 |
+
|
| 115 |
+
- Search results cached by query + max_results hash
|
| 116 |
+
- Default TTL: 1 hour (3600s)
|
| 117 |
+
- Max cache size: 1000 entries with LRU eviction
|
| 118 |
+
- Significantly reduces redundant searches
|
| 119 |
+
|
| 120 |
+
## Important Implementation Details
|
| 121 |
+
|
| 122 |
+
### Caption Generation
|
| 123 |
+
- Uses GLM-4.5V via HuggingFace InferenceClient with Novita provider
|
| 124 |
+
- Converts PIL image to base64 data URL
|
| 125 |
+
- Expects JSON response with "search_query" field
|
| 126 |
+
- Fallback to "tattoo artwork" on failure
|
| 127 |
+
|
| 128 |
+
### Image Download Headers
|
| 129 |
+
- Platform-specific headers (Pinterest, Instagram optimizations)
|
| 130 |
+
- Random user agent rotation
|
| 131 |
+
- Content-type and size validation (10MB limit, min 50x50px)
|
| 132 |
+
- Exponential backoff retry mechanism
|
| 133 |
+
|
| 134 |
+
### Similarity Computation
|
| 135 |
+
- Early stopping optimization: stops at 20 good results (5 if patch attention enabled)
|
| 136 |
+
- ThreadPoolExecutor with max 10 workers
|
| 137 |
+
- Rate limiting with 0.1s delays between downloads
|
| 138 |
+
- Future cancellation after target reached
|
| 139 |
+
|
| 140 |
+
### Patch Attention
|
| 141 |
+
- Only triggered when `include_patch_attention=true`
|
| 142 |
+
- Computes NxM attention matrix (query patches × candidate patches)
|
| 143 |
+
- Visualizations include: attention heatmap, patch grid overlays, top correspondences
|
| 144 |
+
- Returns base64-encoded PNG images
|
| 145 |
+
|
| 146 |
+
## API Response Structures
|
| 147 |
+
|
| 148 |
+
**POST /search** returns:
|
| 149 |
+
```json
|
| 150 |
+
{
|
| 151 |
+
"caption": "string",
|
| 152 |
+
"results": [
|
| 153 |
+
{
|
| 154 |
+
"score": 0.95,
|
| 155 |
+
"url": "https://...",
|
| 156 |
+
"patch_attention": { // optional
|
| 157 |
+
"overall_similarity": 0.87,
|
| 158 |
+
"query_grid_size": 7,
|
| 159 |
+
"candidate_grid_size": 7,
|
| 160 |
+
"attention_summary": {...}
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
],
|
| 164 |
+
"embedding_model": "CLIP-ViT-B-32",
|
| 165 |
+
"patch_attention_enabled": false
|
| 166 |
+
}
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
**POST /analyze-attention** returns detailed patch analysis with visualizations
|
| 170 |
+
|
| 171 |
+
## Common Development Patterns
|
| 172 |
+
|
| 173 |
+
### Adding a New Embedding Model
|
| 174 |
+
|
| 175 |
+
1. Create new class in `embeddings.py` inheriting from `EmbeddingModel`
|
| 176 |
+
2. Implement `load_model()`, `encode_image()`, `encode_image_patches()`, `get_model_name()`
|
| 177 |
+
3. Add to `EmbeddingModelFactory.AVAILABLE_MODELS`
|
| 178 |
+
4. Add config to `get_default_model_configs()`
|
| 179 |
+
|
| 180 |
+
### Adding a New Search Platform
|
| 181 |
+
|
| 182 |
+
1. Create new engine in `search_engines/` inheriting from `BaseSearchEngine`
|
| 183 |
+
2. Add platform to `SearchPlatform` enum in `base.py`
|
| 184 |
+
3. Implement `search()` and `is_valid_url()` methods
|
| 185 |
+
4. Add to `SearchEngineManager.engines` dict
|
| 186 |
+
5. Update platform prioritization in `search_with_fallback()` if needed
|
| 187 |
+
|
| 188 |
+
## Performance Considerations
|
| 189 |
+
|
| 190 |
+
- GPU acceleration used if available (CUDA)
|
| 191 |
+
- Concurrent image downloads (ThreadPoolExecutor)
|
| 192 |
+
- Search result caching to reduce API calls
|
| 193 |
+
- Early stopping in similarity computation
|
| 194 |
+
- Future cancellation after targets met
|
| 195 |
+
- Model instances reused globally to avoid reloading
|
| 196 |
+
|
| 197 |
+
## Deployment Notes
|
| 198 |
+
|
| 199 |
+
- Designed for HuggingFace Spaces with Docker SDK
|
| 200 |
+
- Port 7860 (HF Spaces default)
|
| 201 |
+
- Recommended hardware: T4 Small GPU or higher
|
| 202 |
+
- Health check endpoint at `/health` for monitoring
|
| 203 |
+
- All models download on first use and cache in `/app/cache`
|
embeddings.py
CHANGED
|
@@ -216,6 +216,273 @@ class DINOv2Embedding(EmbeddingModel):
|
|
| 216 |
return f"DINOv2-{self.model_name}"
|
| 217 |
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
class SigLIPEmbedding(EmbeddingModel):
|
| 220 |
"""SigLIP-based embedding model."""
|
| 221 |
|
|
@@ -297,6 +564,8 @@ class EmbeddingModelFactory:
|
|
| 297 |
AVAILABLE_MODELS = {
|
| 298 |
"clip": CLIPEmbedding,
|
| 299 |
"dinov2": DINOv2Embedding,
|
|
|
|
|
|
|
| 300 |
"siglip": SigLIPEmbedding,
|
| 301 |
}
|
| 302 |
|
|
@@ -305,7 +574,7 @@ class EmbeddingModelFactory:
|
|
| 305 |
"""Create an embedding model instance.
|
| 306 |
|
| 307 |
Args:
|
| 308 |
-
model_type: Type of model ('clip', 'dinov2', 'siglip')
|
| 309 |
device: PyTorch device
|
| 310 |
**kwargs: Additional arguments for specific models
|
| 311 |
|
|
@@ -345,6 +614,14 @@ def get_default_model_configs() -> Dict[str, Dict[str, Any]]:
|
|
| 345 |
"model_name": "dinov2_vitb14",
|
| 346 |
"description": "Meta DINOv2 - self-supervised vision transformer, good for visual features"
|
| 347 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
"siglip": {
|
| 349 |
"model_name": "google/siglip-base-patch16-224",
|
| 350 |
"description": "Google SigLIP - improved CLIP-like model with better training"
|
|
|
|
| 216 |
return f"DINOv2-{self.model_name}"
|
| 217 |
|
| 218 |
|
| 219 |
+
class DINOv2WithRegistersEmbedding(EmbeddingModel):
|
| 220 |
+
"""DINOv2 with register tokens - improved feature maps and attention."""
|
| 221 |
+
|
| 222 |
+
def __init__(self, device: torch.device, model_name: str = "facebook/dinov2-with-registers-base"):
|
| 223 |
+
super().__init__(device)
|
| 224 |
+
self.model_name = model_name
|
| 225 |
+
self.processor = None
|
| 226 |
+
self.load_model()
|
| 227 |
+
|
| 228 |
+
def load_model(self) -> None:
|
| 229 |
+
"""Load DINOv2 with registers model and preprocessing."""
|
| 230 |
+
try:
|
| 231 |
+
from transformers import Dinov2WithRegistersModel, AutoImageProcessor
|
| 232 |
+
|
| 233 |
+
logger.info(f"Loading DINOv2 with registers model: {self.model_name}")
|
| 234 |
+
|
| 235 |
+
self.model = Dinov2WithRegistersModel.from_pretrained(self.model_name)
|
| 236 |
+
self.model.to(self.device)
|
| 237 |
+
self.model.eval()
|
| 238 |
+
|
| 239 |
+
self.processor = AutoImageProcessor.from_pretrained(self.model_name)
|
| 240 |
+
|
| 241 |
+
logger.info(f"DINOv2 with registers model {self.model_name} loaded successfully")
|
| 242 |
+
except Exception as e:
|
| 243 |
+
logger.error(f"Failed to load DINOv2 with registers model: {e}")
|
| 244 |
+
raise
|
| 245 |
+
|
| 246 |
+
def encode_image(self, image: Image.Image) -> torch.Tensor:
|
| 247 |
+
"""Encode image using DINOv2 with registers."""
|
| 248 |
+
try:
|
| 249 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 250 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 251 |
+
|
| 252 |
+
with torch.no_grad():
|
| 253 |
+
outputs = self.model(**inputs)
|
| 254 |
+
# Use pooler_output for global representation, fallback to mean pooling
|
| 255 |
+
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
|
| 256 |
+
features = outputs.pooler_output
|
| 257 |
+
else:
|
| 258 |
+
# Mean pooling over spatial dimensions
|
| 259 |
+
features = outputs.last_hidden_state.mean(dim=1)
|
| 260 |
+
|
| 261 |
+
features = F.normalize(features, p=2, dim=1)
|
| 262 |
+
|
| 263 |
+
return features
|
| 264 |
+
except Exception as e:
|
| 265 |
+
logger.error(f"Failed to encode image with DINOv2 with registers: {e}")
|
| 266 |
+
raise
|
| 267 |
+
|
| 268 |
+
def encode_image_patches(self, image: Image.Image) -> torch.Tensor:
|
| 269 |
+
"""Encode image patches using DINOv2 with registers."""
|
| 270 |
+
try:
|
| 271 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 272 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 273 |
+
|
| 274 |
+
with torch.no_grad():
|
| 275 |
+
outputs = self.model(**inputs)
|
| 276 |
+
# Token sequence structure: [CLS] + 4 register tokens + 256 patch tokens = 261 total
|
| 277 |
+
# We want only the spatial patch tokens (positions 5 to 260)
|
| 278 |
+
|
| 279 |
+
num_register_tokens = 4
|
| 280 |
+
expected_patches = (224 // 14) ** 2 # 256 for base model with 224x224 input, patch size 14
|
| 281 |
+
|
| 282 |
+
# Skip CLS token (position 0) and register tokens (positions 1-4)
|
| 283 |
+
start_idx = 1 + num_register_tokens # Position 5
|
| 284 |
+
end_idx = start_idx + expected_patches # Position 261
|
| 285 |
+
|
| 286 |
+
patch_features = outputs.last_hidden_state[:, start_idx:end_idx, :] # [1, 256, feature_dim]
|
| 287 |
+
|
| 288 |
+
# Normalize patch features
|
| 289 |
+
patch_features = F.normalize(patch_features, p=2, dim=-1)
|
| 290 |
+
|
| 291 |
+
return patch_features.squeeze(0) # [num_patches, feature_dim]
|
| 292 |
+
|
| 293 |
+
except Exception as e:
|
| 294 |
+
logger.error(f"Failed to encode image patches with DINOv2 with registers: {e}")
|
| 295 |
+
raise
|
| 296 |
+
|
| 297 |
+
def get_model_name(self) -> str:
|
| 298 |
+
return f"DINOv2-WithRegisters-{self.model_name.split('/')[-1]}"
|
| 299 |
+
|
| 300 |
+
def get_attention_maps(self, image: Image.Image) -> torch.Tensor:
|
| 301 |
+
"""
|
| 302 |
+
Extract native attention maps from DINOv2 with registers.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
Attention tensor with shape (num_layers, num_heads, num_tokens, num_tokens)
|
| 306 |
+
where num_tokens includes [CLS] + patches + registers
|
| 307 |
+
"""
|
| 308 |
+
try:
|
| 309 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 310 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 311 |
+
|
| 312 |
+
with torch.no_grad():
|
| 313 |
+
outputs = self.model(**inputs, output_attentions=True)
|
| 314 |
+
# outputs.attentions is a tuple of attention tensors, one per layer
|
| 315 |
+
# Each has shape: (batch_size, num_heads, sequence_length, sequence_length)
|
| 316 |
+
|
| 317 |
+
# Stack all layer attentions
|
| 318 |
+
attention_stack = torch.stack(outputs.attentions) # (num_layers, batch_size, num_heads, seq_len, seq_len)
|
| 319 |
+
attention_stack = attention_stack.squeeze(1) # Remove batch dimension -> (num_layers, num_heads, seq_len, seq_len)
|
| 320 |
+
|
| 321 |
+
return attention_stack
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
logger.error(f"Failed to extract attention maps: {e}")
|
| 325 |
+
raise
|
| 326 |
+
|
| 327 |
+
def compute_cross_attention(self, query_image: Image.Image, candidate_image: Image.Image) -> torch.Tensor:
|
| 328 |
+
"""
|
| 329 |
+
Compute cross-attention between query and candidate images using patch features.
|
| 330 |
+
|
| 331 |
+
This uses the extracted patch embeddings to compute attention from query to candidate,
|
| 332 |
+
similar to the native attention mechanism but across two images.
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
Cross-attention matrix with shape (query_patches, candidate_patches)
|
| 336 |
+
"""
|
| 337 |
+
try:
|
| 338 |
+
# Get patch features for both images
|
| 339 |
+
query_patches = self.encode_image_patches(query_image) # (num_query_patches, feature_dim)
|
| 340 |
+
candidate_patches = self.encode_image_patches(candidate_image) # (num_candidate_patches, feature_dim)
|
| 341 |
+
|
| 342 |
+
# Compute attention-style similarity (softmax over candidate dimension)
|
| 343 |
+
# attention[i,j] = how much query patch i attends to candidate patch j
|
| 344 |
+
attention_logits = torch.mm(query_patches, candidate_patches.T) # (query_patches, candidate_patches)
|
| 345 |
+
|
| 346 |
+
# Apply softmax to get attention distribution for each query patch
|
| 347 |
+
cross_attention = F.softmax(attention_logits, dim=1)
|
| 348 |
+
|
| 349 |
+
return cross_attention
|
| 350 |
+
|
| 351 |
+
except Exception as e:
|
| 352 |
+
logger.error(f"Failed to compute cross-attention: {e}")
|
| 353 |
+
raise
|
| 354 |
+
|
| 355 |
+
def supports_native_attention(self) -> bool:
|
| 356 |
+
"""Check if this model supports native attention extraction."""
|
| 357 |
+
return True
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class DINOv3Embedding(EmbeddingModel):
|
| 361 |
+
"""DINOv3-based embedding model from HuggingFace transformers."""
|
| 362 |
+
|
| 363 |
+
def __init__(self, device: torch.device, model_name: str = "facebook/dinov3-vits16-pretrain-lvd1689m"):
|
| 364 |
+
super().__init__(device)
|
| 365 |
+
self.model_name = model_name
|
| 366 |
+
self.processor = None
|
| 367 |
+
self.load_model()
|
| 368 |
+
|
| 369 |
+
def load_model(self) -> None:
|
| 370 |
+
"""Load DINOv3 model and preprocessing."""
|
| 371 |
+
try:
|
| 372 |
+
from transformers import AutoModel, AutoImageProcessor
|
| 373 |
+
|
| 374 |
+
logger.info(f"Loading DINOv3 model: {self.model_name}")
|
| 375 |
+
|
| 376 |
+
self.model = AutoModel.from_pretrained(self.model_name)
|
| 377 |
+
self.model.to(self.device)
|
| 378 |
+
self.model.eval()
|
| 379 |
+
|
| 380 |
+
self.processor = AutoImageProcessor.from_pretrained(self.model_name)
|
| 381 |
+
|
| 382 |
+
logger.info(f"DINOv3 model {self.model_name} loaded successfully")
|
| 383 |
+
except Exception as e:
|
| 384 |
+
logger.error(f"Failed to load DINOv3 model: {e}")
|
| 385 |
+
raise
|
| 386 |
+
|
| 387 |
+
def encode_image(self, image: Image.Image) -> torch.Tensor:
|
| 388 |
+
"""Encode image using DINOv3."""
|
| 389 |
+
try:
|
| 390 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 391 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 392 |
+
|
| 393 |
+
with torch.no_grad():
|
| 394 |
+
outputs = self.model(**inputs)
|
| 395 |
+
# Use pooler_output (CLS token) for global representation
|
| 396 |
+
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
|
| 397 |
+
features = outputs.pooler_output
|
| 398 |
+
else:
|
| 399 |
+
# Fallback to mean pooling over patch embeddings
|
| 400 |
+
features = outputs.last_hidden_state[:, 1:, :].mean(dim=1)
|
| 401 |
+
|
| 402 |
+
features = F.normalize(features, p=2, dim=1)
|
| 403 |
+
|
| 404 |
+
return features
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"Failed to encode image with DINOv3: {e}")
|
| 407 |
+
raise
|
| 408 |
+
|
| 409 |
+
def encode_image_patches(self, image: Image.Image) -> torch.Tensor:
|
| 410 |
+
"""Encode image patches using DINOv3."""
|
| 411 |
+
try:
|
| 412 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 413 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 414 |
+
|
| 415 |
+
with torch.no_grad():
|
| 416 |
+
outputs = self.model(**inputs)
|
| 417 |
+
# DINOv3 outputs: [CLS] + register tokens + patch tokens
|
| 418 |
+
# We want only the patch tokens (skip CLS at position 0 and register tokens)
|
| 419 |
+
# For DINOv3-ViTS16, it has 4 register tokens
|
| 420 |
+
num_register_tokens = 4
|
| 421 |
+
patch_features = outputs.last_hidden_state[:, 1 + num_register_tokens:, :]
|
| 422 |
+
|
| 423 |
+
# Normalize patch features
|
| 424 |
+
patch_features = F.normalize(patch_features, p=2, dim=-1)
|
| 425 |
+
|
| 426 |
+
return patch_features.squeeze(0) # [num_patches, feature_dim]
|
| 427 |
+
|
| 428 |
+
except Exception as e:
|
| 429 |
+
logger.error(f"Failed to encode image patches with DINOv3: {e}")
|
| 430 |
+
raise
|
| 431 |
+
|
| 432 |
+
def get_model_name(self) -> str:
|
| 433 |
+
return f"DINOv3-{self.model_name.split('/')[-1]}"
|
| 434 |
+
|
| 435 |
+
def supports_native_attention(self) -> bool:
|
| 436 |
+
"""Check if this model supports native attention extraction."""
|
| 437 |
+
return True
|
| 438 |
+
|
| 439 |
+
def get_attention_maps(self, image: Image.Image) -> torch.Tensor:
|
| 440 |
+
"""
|
| 441 |
+
Extract native attention maps from DINOv3.
|
| 442 |
+
|
| 443 |
+
Returns:
|
| 444 |
+
Attention tensor with shape (num_layers, num_heads, num_tokens, num_tokens)
|
| 445 |
+
"""
|
| 446 |
+
try:
|
| 447 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 448 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 449 |
+
|
| 450 |
+
with torch.no_grad():
|
| 451 |
+
outputs = self.model(**inputs, output_attentions=True)
|
| 452 |
+
# Stack all layer attentions
|
| 453 |
+
attention_stack = torch.stack(outputs.attentions)
|
| 454 |
+
attention_stack = attention_stack.squeeze(1) # Remove batch dimension
|
| 455 |
+
|
| 456 |
+
return attention_stack
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
logger.error(f"Failed to extract attention maps: {e}")
|
| 460 |
+
raise
|
| 461 |
+
|
| 462 |
+
def compute_cross_attention(self, query_image: Image.Image, candidate_image: Image.Image) -> torch.Tensor:
|
| 463 |
+
"""
|
| 464 |
+
Compute cross-attention between query and candidate images using patch features.
|
| 465 |
+
|
| 466 |
+
Returns:
|
| 467 |
+
Cross-attention matrix with shape (query_patches, candidate_patches)
|
| 468 |
+
"""
|
| 469 |
+
try:
|
| 470 |
+
query_patches = self.encode_image_patches(query_image)
|
| 471 |
+
candidate_patches = self.encode_image_patches(candidate_image)
|
| 472 |
+
|
| 473 |
+
# Compute attention-style similarity
|
| 474 |
+
attention_logits = torch.mm(query_patches, candidate_patches.T)
|
| 475 |
+
|
| 476 |
+
# Apply softmax to get attention distribution
|
| 477 |
+
cross_attention = F.softmax(attention_logits, dim=1)
|
| 478 |
+
|
| 479 |
+
return cross_attention
|
| 480 |
+
|
| 481 |
+
except Exception as e:
|
| 482 |
+
logger.error(f"Failed to compute cross-attention: {e}")
|
| 483 |
+
raise
|
| 484 |
+
|
| 485 |
+
|
| 486 |
class SigLIPEmbedding(EmbeddingModel):
|
| 487 |
"""SigLIP-based embedding model."""
|
| 488 |
|
|
|
|
| 564 |
AVAILABLE_MODELS = {
|
| 565 |
"clip": CLIPEmbedding,
|
| 566 |
"dinov2": DINOv2Embedding,
|
| 567 |
+
"dinov2_registers": DINOv2WithRegistersEmbedding,
|
| 568 |
+
"dinov3": DINOv3Embedding,
|
| 569 |
"siglip": SigLIPEmbedding,
|
| 570 |
}
|
| 571 |
|
|
|
|
| 574 |
"""Create an embedding model instance.
|
| 575 |
|
| 576 |
Args:
|
| 577 |
+
model_type: Type of model ('clip', 'dinov2', 'dinov2_registers', 'dinov3', 'siglip')
|
| 578 |
device: PyTorch device
|
| 579 |
**kwargs: Additional arguments for specific models
|
| 580 |
|
|
|
|
| 614 |
"model_name": "dinov2_vitb14",
|
| 615 |
"description": "Meta DINOv2 - self-supervised vision transformer, good for visual features"
|
| 616 |
},
|
| 617 |
+
"dinov2_registers": {
|
| 618 |
+
"model_name": "facebook/dinov2-with-registers-base",
|
| 619 |
+
"description": "Meta DINOv2 with register tokens - improved feature maps and attention"
|
| 620 |
+
},
|
| 621 |
+
"dinov3": {
|
| 622 |
+
"model_name": "facebook/dinov3-vits16-pretrain-lvd1689m",
|
| 623 |
+
"description": "Meta DINOv3 - vision foundation model with high-quality dense features"
|
| 624 |
+
},
|
| 625 |
"siglip": {
|
| 626 |
"model_name": "google/siglip-base-patch16-224",
|
| 627 |
"description": "Google SigLIP - improved CLIP-like model with better training"
|
patch_attention.py
CHANGED
|
@@ -15,14 +15,21 @@ class PatchAttentionAnalyzer:
|
|
| 15 |
|
| 16 |
def __init__(self, embedding_model):
|
| 17 |
self.embedding_model = embedding_model
|
|
|
|
| 18 |
|
| 19 |
def compute_patch_similarities(self, query_image: Image.Image, candidate_image: Image.Image) -> Dict[str, Any]:
|
| 20 |
"""
|
| 21 |
Compute patch-level similarities between query and candidate images.
|
|
|
|
| 22 |
|
| 23 |
Returns:
|
| 24 |
Dictionary containing attention matrix, top correspondences, and metadata
|
| 25 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
# Get patch features for both images
|
| 28 |
query_patches = self.embedding_model.encode_image_patches(query_image)
|
|
@@ -205,11 +212,61 @@ class PatchAttentionAnalyzer:
|
|
| 205 |
|
| 206 |
return image.crop((left, top, right, bottom))
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
def get_similarity_summary(self, similarity_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 209 |
"""Get a summary of similarity statistics."""
|
| 210 |
attention_matrix = similarity_data['attention_matrix']
|
| 211 |
|
| 212 |
-
|
| 213 |
'overall_similarity': similarity_data['overall_similarity'],
|
| 214 |
'max_similarity': float(np.max(attention_matrix)),
|
| 215 |
'min_similarity': float(np.min(attention_matrix)),
|
|
@@ -218,4 +275,183 @@ class PatchAttentionAnalyzer:
|
|
| 218 |
'candidate_patches_count': similarity_data['candidate_patches_shape'][0],
|
| 219 |
'high_attention_patches': int(np.sum(attention_matrix > (np.mean(attention_matrix) + np.std(attention_matrix)))),
|
| 220 |
'model_name': self.embedding_model.get_model_name()
|
| 221 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def __init__(self, embedding_model):
|
| 17 |
self.embedding_model = embedding_model
|
| 18 |
+
self.supports_native_attention = hasattr(embedding_model, 'supports_native_attention') and embedding_model.supports_native_attention()
|
| 19 |
|
| 20 |
def compute_patch_similarities(self, query_image: Image.Image, candidate_image: Image.Image) -> Dict[str, Any]:
|
| 21 |
"""
|
| 22 |
Compute patch-level similarities between query and candidate images.
|
| 23 |
+
Automatically uses native attention if model supports it.
|
| 24 |
|
| 25 |
Returns:
|
| 26 |
Dictionary containing attention matrix, top correspondences, and metadata
|
| 27 |
"""
|
| 28 |
+
# Use native attention if available
|
| 29 |
+
if self.supports_native_attention:
|
| 30 |
+
return self.compute_native_attention_similarities(query_image, candidate_image)
|
| 31 |
+
|
| 32 |
+
# Fallback to cosine similarity approach
|
| 33 |
try:
|
| 34 |
# Get patch features for both images
|
| 35 |
query_patches = self.embedding_model.encode_image_patches(query_image)
|
|
|
|
| 212 |
|
| 213 |
return image.crop((left, top, right, bottom))
|
| 214 |
|
| 215 |
+
def compute_native_attention_similarities(self, query_image: Image.Image, candidate_image: Image.Image) -> Dict[str, Any]:
|
| 216 |
+
"""
|
| 217 |
+
Compute patch-level similarities using native attention mechanism.
|
| 218 |
+
Only available for models with native attention support (e.g., DINOv2 with registers).
|
| 219 |
+
|
| 220 |
+
Returns:
|
| 221 |
+
Dictionary containing attention matrix, top correspondences, and metadata
|
| 222 |
+
"""
|
| 223 |
+
try:
|
| 224 |
+
# Use model's cross-attention computation
|
| 225 |
+
attention_matrix = self.embedding_model.compute_cross_attention(query_image, candidate_image)
|
| 226 |
+
attention_matrix_np = attention_matrix.cpu().numpy()
|
| 227 |
+
|
| 228 |
+
# Get patch counts (attention_matrix is already query_patches x candidate_patches)
|
| 229 |
+
num_query_patches = attention_matrix.shape[0]
|
| 230 |
+
num_candidate_patches = attention_matrix.shape[1]
|
| 231 |
+
|
| 232 |
+
# Get grid dimensions (assuming square patches)
|
| 233 |
+
query_grid_size = int(math.sqrt(num_query_patches))
|
| 234 |
+
candidate_grid_size = int(math.sqrt(num_candidate_patches))
|
| 235 |
+
|
| 236 |
+
# Find top correspondences for each query patch
|
| 237 |
+
top_correspondences = []
|
| 238 |
+
for i in range(num_query_patches):
|
| 239 |
+
patch_similarities = attention_matrix[i]
|
| 240 |
+
top_indices = torch.topk(patch_similarities, k=min(5, num_candidate_patches))
|
| 241 |
+
|
| 242 |
+
top_correspondences.append({
|
| 243 |
+
'query_patch_idx': i,
|
| 244 |
+
'query_patch_coord': self._patch_idx_to_coord(i, query_grid_size),
|
| 245 |
+
'top_candidate_indices': top_indices.indices.tolist(),
|
| 246 |
+
'top_candidate_coords': [self._patch_idx_to_coord(idx.item(), candidate_grid_size)
|
| 247 |
+
for idx in top_indices.indices],
|
| 248 |
+
'similarity_scores': top_indices.values.tolist()
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
+
return {
|
| 252 |
+
'attention_matrix': attention_matrix_np,
|
| 253 |
+
'query_grid_size': query_grid_size,
|
| 254 |
+
'candidate_grid_size': candidate_grid_size,
|
| 255 |
+
'top_correspondences': top_correspondences,
|
| 256 |
+
'query_patches_shape': (num_query_patches, attention_matrix.shape[-1]),
|
| 257 |
+
'candidate_patches_shape': (num_candidate_patches, attention_matrix.shape[-1]),
|
| 258 |
+
'overall_similarity': torch.mean(attention_matrix).item(),
|
| 259 |
+
'use_native_attention': True
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
except Exception as e:
|
| 263 |
+
raise RuntimeError(f"Error computing native attention similarities: {e}")
|
| 264 |
+
|
| 265 |
def get_similarity_summary(self, similarity_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 266 |
"""Get a summary of similarity statistics."""
|
| 267 |
attention_matrix = similarity_data['attention_matrix']
|
| 268 |
|
| 269 |
+
summary = {
|
| 270 |
'overall_similarity': similarity_data['overall_similarity'],
|
| 271 |
'max_similarity': float(np.max(attention_matrix)),
|
| 272 |
'min_similarity': float(np.min(attention_matrix)),
|
|
|
|
| 275 |
'candidate_patches_count': similarity_data['candidate_patches_shape'][0],
|
| 276 |
'high_attention_patches': int(np.sum(attention_matrix > (np.mean(attention_matrix) + np.std(attention_matrix)))),
|
| 277 |
'model_name': self.embedding_model.get_model_name()
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
# Add native attention flag if present
|
| 281 |
+
if 'use_native_attention' in similarity_data:
|
| 282 |
+
summary['use_native_attention'] = similarity_data['use_native_attention']
|
| 283 |
+
|
| 284 |
+
return summary
|
| 285 |
+
|
| 286 |
+
def visualize_multihead_attention(self, image: Image.Image, layer_idx: int = -1, figsize: Tuple[int, int] = (20, 12)) -> str:
|
| 287 |
+
"""
|
| 288 |
+
Visualize attention from multiple heads for a single image.
|
| 289 |
+
Only available for models with native attention support.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
image: Input image to visualize attention for
|
| 293 |
+
layer_idx: Which transformer layer to visualize (-1 for last layer)
|
| 294 |
+
figsize: Figure size for the plot
|
| 295 |
+
|
| 296 |
+
Returns:
|
| 297 |
+
Base64 encoded PNG image showing multi-head attention patterns
|
| 298 |
+
"""
|
| 299 |
+
if not self.supports_native_attention:
|
| 300 |
+
raise ValueError("Multi-head attention visualization requires native attention support")
|
| 301 |
+
|
| 302 |
+
try:
|
| 303 |
+
# Get attention maps from the model
|
| 304 |
+
attention_maps = self.embedding_model.get_attention_maps(image)
|
| 305 |
+
# Shape: (num_layers, num_heads, num_tokens, num_tokens)
|
| 306 |
+
|
| 307 |
+
# Select the specified layer
|
| 308 |
+
layer_attention = attention_maps[layer_idx] # (num_heads, num_tokens, num_tokens)
|
| 309 |
+
num_heads = layer_attention.shape[0]
|
| 310 |
+
|
| 311 |
+
# Extract patch-to-patch attention (exclude CLS token and register tokens)
|
| 312 |
+
# Token sequence structure varies by model:
|
| 313 |
+
# DINOv2 with registers: [CLS] + 4 register tokens + 256 spatial patches = 261 total
|
| 314 |
+
# DINOv3: [CLS] + 4 register tokens + 196 spatial patches (16x16 patches) = 201 total
|
| 315 |
+
model_name = self.embedding_model.get_model_name().lower()
|
| 316 |
+
|
| 317 |
+
if 'dinov3' in model_name:
|
| 318 |
+
num_register_tokens = 4
|
| 319 |
+
expected_patches = 196 # For 224x224 image with patch size 16 (14*14=196)
|
| 320 |
+
else:
|
| 321 |
+
num_register_tokens = 4
|
| 322 |
+
expected_patches = 256 # For 224x224 image with patch size 14
|
| 323 |
+
|
| 324 |
+
# Skip CLS token (position 0) and register tokens (positions 1-4)
|
| 325 |
+
start_idx = 1 + num_register_tokens # Position 5
|
| 326 |
+
end_idx = start_idx + expected_patches # Position 261
|
| 327 |
+
patch_attention = layer_attention[:, start_idx:end_idx, start_idx:end_idx]
|
| 328 |
+
|
| 329 |
+
# Convert to numpy
|
| 330 |
+
patch_attention_np = patch_attention.cpu().numpy()
|
| 331 |
+
|
| 332 |
+
# Get grid size
|
| 333 |
+
num_patches = patch_attention.shape[1]
|
| 334 |
+
grid_size = int(math.sqrt(num_patches))
|
| 335 |
+
|
| 336 |
+
# Create subplot grid
|
| 337 |
+
num_cols = 4
|
| 338 |
+
num_rows = (num_heads + num_cols - 1) // num_cols # Ceiling division
|
| 339 |
+
fig, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
|
| 340 |
+
axes = axes.flatten() if num_heads > 1 else [axes]
|
| 341 |
+
|
| 342 |
+
layer_name = f"Layer {layer_idx}" if layer_idx >= 0 else f"Last Layer ({len(attention_maps)})"
|
| 343 |
+
fig.suptitle(f'Multi-Head Attention Patterns - {layer_name}', fontsize=16, fontweight='bold')
|
| 344 |
+
|
| 345 |
+
# Plot each head's average attention
|
| 346 |
+
for head_idx in range(num_heads):
|
| 347 |
+
# Average attention from all query patches to all key patches
|
| 348 |
+
head_attn = patch_attention_np[head_idx]
|
| 349 |
+
avg_attention = np.mean(head_attn, axis=0).reshape(grid_size, grid_size)
|
| 350 |
+
|
| 351 |
+
im = axes[head_idx].imshow(avg_attention, cmap='viridis', interpolation='nearest')
|
| 352 |
+
axes[head_idx].set_title(f'Head {head_idx + 1}')
|
| 353 |
+
axes[head_idx].axis('off')
|
| 354 |
+
plt.colorbar(im, ax=axes[head_idx], fraction=0.046, pad=0.04)
|
| 355 |
+
|
| 356 |
+
# Hide unused subplots
|
| 357 |
+
for idx in range(num_heads, len(axes)):
|
| 358 |
+
axes[idx].axis('off')
|
| 359 |
+
|
| 360 |
+
plt.tight_layout()
|
| 361 |
+
|
| 362 |
+
# Convert to base64
|
| 363 |
+
buffer = io.BytesIO()
|
| 364 |
+
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
|
| 365 |
+
buffer.seek(0)
|
| 366 |
+
plot_data = buffer.getvalue()
|
| 367 |
+
buffer.close()
|
| 368 |
+
plt.close()
|
| 369 |
+
|
| 370 |
+
return base64.b64encode(plot_data).decode()
|
| 371 |
+
|
| 372 |
+
except Exception as e:
|
| 373 |
+
raise RuntimeError(f"Error visualizing multi-head attention: {e}")
|
| 374 |
+
|
| 375 |
+
def visualize_attention_comparison(self, query_image: Image.Image, candidate_image: Image.Image,
|
| 376 |
+
figsize: Tuple[int, int] = (20, 10)) -> str:
|
| 377 |
+
"""
|
| 378 |
+
Compare native attention vs computed cosine similarity side-by-side.
|
| 379 |
+
Only available for models with native attention support.
|
| 380 |
+
|
| 381 |
+
Args:
|
| 382 |
+
query_image: Query image
|
| 383 |
+
candidate_image: Candidate image
|
| 384 |
+
figsize: Figure size for the plot
|
| 385 |
+
|
| 386 |
+
Returns:
|
| 387 |
+
Base64 encoded PNG showing both attention methods
|
| 388 |
+
"""
|
| 389 |
+
if not self.supports_native_attention:
|
| 390 |
+
raise ValueError("Attention comparison requires native attention support")
|
| 391 |
+
|
| 392 |
+
try:
|
| 393 |
+
# Compute native attention
|
| 394 |
+
native_data = self.compute_native_attention_similarities(query_image, candidate_image)
|
| 395 |
+
|
| 396 |
+
# Compute cosine similarity for comparison
|
| 397 |
+
query_patches = self.embedding_model.encode_image_patches(query_image)
|
| 398 |
+
candidate_patches = self.embedding_model.encode_image_patches(candidate_image)
|
| 399 |
+
cosine_attention = self.embedding_model.compute_patch_attention(query_patches, candidate_patches)
|
| 400 |
+
cosine_attention_np = cosine_attention.cpu().numpy()
|
| 401 |
+
|
| 402 |
+
# Create comparison visualization
|
| 403 |
+
fig, axes = plt.subplots(2, 3, figsize=figsize)
|
| 404 |
+
fig.suptitle('Native Attention vs Cosine Similarity Comparison', fontsize=16, fontweight='bold')
|
| 405 |
+
|
| 406 |
+
# Row 1: Native attention
|
| 407 |
+
axes[0, 0].imshow(query_image)
|
| 408 |
+
axes[0, 0].set_title('Query Image')
|
| 409 |
+
axes[0, 0].axis('off')
|
| 410 |
+
|
| 411 |
+
im1 = axes[0, 1].imshow(native_data['attention_matrix'], cmap='viridis', aspect='auto')
|
| 412 |
+
axes[0, 1].set_title(f'Native Attention\n(Avg: {native_data["overall_similarity"]:.3f})')
|
| 413 |
+
axes[0, 1].set_xlabel('Candidate Patches')
|
| 414 |
+
axes[0, 1].set_ylabel('Query Patches')
|
| 415 |
+
plt.colorbar(im1, ax=axes[0, 1], fraction=0.046, pad=0.04)
|
| 416 |
+
|
| 417 |
+
# Max attention heatmap for native
|
| 418 |
+
max_native = np.max(native_data['attention_matrix'], axis=1)
|
| 419 |
+
native_grid = max_native.reshape(native_data['query_grid_size'], native_data['query_grid_size'])
|
| 420 |
+
im2 = axes[0, 2].imshow(native_grid, cmap='hot', interpolation='nearest')
|
| 421 |
+
axes[0, 2].set_title('Max Native Attention per Patch')
|
| 422 |
+
plt.colorbar(im2, ax=axes[0, 2], fraction=0.046, pad=0.04)
|
| 423 |
+
|
| 424 |
+
# Row 2: Cosine similarity
|
| 425 |
+
axes[1, 0].imshow(candidate_image)
|
| 426 |
+
axes[1, 0].set_title('Candidate Image')
|
| 427 |
+
axes[1, 0].axis('off')
|
| 428 |
+
|
| 429 |
+
cosine_mean = float(np.mean(cosine_attention_np))
|
| 430 |
+
im3 = axes[1, 1].imshow(cosine_attention_np, cmap='viridis', aspect='auto')
|
| 431 |
+
axes[1, 1].set_title(f'Cosine Similarity\n(Avg: {cosine_mean:.3f})')
|
| 432 |
+
axes[1, 1].set_xlabel('Candidate Patches')
|
| 433 |
+
axes[1, 1].set_ylabel('Query Patches')
|
| 434 |
+
plt.colorbar(im3, ax=axes[1, 1], fraction=0.046, pad=0.04)
|
| 435 |
+
|
| 436 |
+
# Max attention heatmap for cosine
|
| 437 |
+
max_cosine = np.max(cosine_attention_np, axis=1)
|
| 438 |
+
query_grid_size = int(math.sqrt(query_patches.shape[0]))
|
| 439 |
+
cosine_grid = max_cosine.reshape(query_grid_size, query_grid_size)
|
| 440 |
+
im4 = axes[1, 2].imshow(cosine_grid, cmap='hot', interpolation='nearest')
|
| 441 |
+
axes[1, 2].set_title('Max Cosine Similarity per Patch')
|
| 442 |
+
plt.colorbar(im4, ax=axes[1, 2], fraction=0.046, pad=0.04)
|
| 443 |
+
|
| 444 |
+
plt.tight_layout()
|
| 445 |
+
|
| 446 |
+
# Convert to base64
|
| 447 |
+
buffer = io.BytesIO()
|
| 448 |
+
plt.savefig(buffer, format='png', dpi=150, bbox_inches='tight')
|
| 449 |
+
buffer.seek(0)
|
| 450 |
+
plot_data = buffer.getvalue()
|
| 451 |
+
buffer.close()
|
| 452 |
+
plt.close()
|
| 453 |
+
|
| 454 |
+
return base64.b64encode(plot_data).decode()
|
| 455 |
+
|
| 456 |
+
except Exception as e:
|
| 457 |
+
raise RuntimeError(f"Error comparing attention methods: {e}")
|