File size: 20,643 Bytes
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
8880ccb
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
 
f761027
 
 
 
 
 
 
 
8880ccb
 
 
f761027
 
 
 
 
 
 
8880ccb
 
 
f761027
 
 
 
8880ccb
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
8880ccb
 
 
 
f761027
 
 
 
 
 
 
8880ccb
 
 
 
 
 
f761027
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
 
f761027
 
 
8880ccb
 
 
f761027
 
 
 
 
8880ccb
f761027
 
 
 
 
 
 
 
 
 
8880ccb
 
 
 
 
 
 
 
 
f761027
 
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
 
 
 
 
 
 
 
 
 
8880ccb
 
 
f761027
 
 
8880ccb
 
 
f761027
 
 
 
 
 
 
8880ccb
 
 
 
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8880ccb
f761027
 
 
 
 
 
 
 
 
 
917a5d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import io
import json
import logging
import os
import random
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any, Dict, List, Optional

import requests
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from fastapi import FastAPI, File, HTTPException, Query, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from huggingface_hub import InferenceClient
from PIL import Image

from embeddings import EmbeddingModel, EmbeddingModelFactory, get_default_model_configs
from patch_attention import PatchAttentionAnalyzer
from search_engines import SearchEngineManager
from utils import SearchCache, URLValidator

# Load environment variables from .env file
load_dotenv()

# Configuration
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable is required")

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Tattoo Search Engine", version="1.0.0")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class TattooSearchEngine:
    def __init__(self, embedding_model_type: str = "clip"):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logger.info(f"Using device: {self.device}")

        # Initialize HuggingFace InferenceClient for VLM captioning
        logger.info("Initializing HuggingFace InferenceClient...")
        self.client = InferenceClient(
            provider="novita",
            api_key=HF_TOKEN,
        )
        self.vlm_model = "zai-org/GLM-4.5V"
        logger.info(f"Using VLM model: {self.vlm_model}")

        # Load embedding model
        logger.info(f"Loading embedding model: {embedding_model_type}")
        self.embedding_model = EmbeddingModelFactory.create_model(
            embedding_model_type, self.device
        )
        logger.info(f"Using embedding model: {self.embedding_model.get_model_name()}")

        # Initialize new search system
        logger.info("Initializing search system...")
        self.search_manager = SearchEngineManager(max_workers=5)
        self.url_validator = URLValidator(max_workers=10, timeout=10)
        self.search_cache = SearchCache(default_ttl=3600, max_size=1000)

        # Setup enhanced web scraping
        self.user_agents = [
            "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
            "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0",
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15",
            "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
        ]

        logger.info("Search system initialized successfully!")

    def generate_caption(self, image: Image.Image) -> str:
        """Generate tattoo caption using HuggingFace InferenceClient."""
        try:
            # Convert PIL image to base64 URL format
            img_buffer = io.BytesIO()
            image.save(img_buffer, format="JPEG", quality=95)
            img_buffer.seek(0)

            # Create image URL for the API
            import base64

            image_b64 = base64.b64encode(img_buffer.getvalue()).decode()
            image_url = f"data:image/jpeg;base64,{image_b64}"

            completion = self.client.chat.completions.create(
                model=self.vlm_model,
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": "Generate a one search engine query to find the most similar tattoos to this image. Response in json format",
                            },
                            {
                                "type": "image_url",
                                "image_url": {"url": image_url},
                            },
                        ],
                    }
                ],
            )
            caption = completion.choices[0].message.content
            if caption:
                match = re.search(r"\{.*\}", caption)
                if match:
                    data = json.loads(match.group())
                    search_query = data["search_query"]
                    return search_query

            else:
                logger.warning("No caption generated from VLM")
                return "tattoo artwork"

        except Exception as e:
            logger.error(f"Failed to generate caption: {e}")
            return "tattoo artwork"

    def search_images(self, query: str, max_results: int = 50) -> List[str]:
        """Search for tattoo images across multiple platforms with caching and validation."""
        # Check cache first
        cache_key = SearchCache.create_cache_key(query, max_results)
        cached_result = self.search_cache.get(cache_key)
        if cached_result:
            logger.info(f"Cache hit for query: {query}")
            return cached_result

        logger.info(f"Searching for images: {query}")

        # Use new search system with fallback
        search_result = self.search_manager.search_with_fallback(
            query=query, max_results=max_results, min_results_threshold=10
        )

        # Extract URLs from search results
        urls = [image.url for image in search_result.images]

        if not urls:
            logger.warning(f"No URLs found for query: {query}")
            return []

        # Validate URLs
        logger.info(f"Validating {len(urls)} URLs...")
        valid_urls = self.url_validator.validate_urls(urls)

        if not valid_urls:
            logger.warning(f"No valid URLs found for query: {query}")
            return []

        # Cache the result
        self.search_cache.set(cache_key, valid_urls, ttl=3600)

        logger.info(
            f"Search completed: {len(valid_urls)} valid URLs from "
            f"{len(search_result.platforms_used)} platforms in "
            f"{search_result.search_duration:.2f}s"
        )

        return valid_urls[:max_results]

    def download_image(self, url: str, max_retries: int = 3) -> Image.Image:
        for attempt in range(max_retries):
            try:
                # Instagram-optimized headers
                headers = {
                    "User-Agent": random.choice(self.user_agents),
                    "Accept": "image/webp,image/apng,image/*,*/*;q=0.8",
                    "Accept-Language": "en-US,en;q=0.9",
                    "Accept-Encoding": "gzip, deflate, br",
                    "DNT": "1",
                    "Connection": "keep-alive",
                    "Upgrade-Insecure-Requests": "1",
                    "Sec-Fetch-Dest": "image",
                    "Sec-Fetch-Mode": "no-cors",
                    "Sec-Fetch-Site": "cross-site",
                    "Cache-Control": "no-cache",
                    "Pragma": "no-cache",
                }

                # Pinterest-specific headers
                if "pinterest" in url.lower() or "pinimg" in url.lower():
                    headers.update(
                        {
                            "Referer": "https://www.pinterest.com/",
                            "Origin": "https://www.pinterest.com",
                            "X-Requested-With": "XMLHttpRequest",
                            "Sec-Fetch-User": "?1",
                            "X-Pinterest-Source": "web",
                            "X-APP-VERSION": "web",
                        }
                    )
                else:
                    headers["Referer"] = "https://www.google.com/"

                response = requests.get(
                    url, headers=headers, timeout=15, allow_redirects=True, stream=True
                )
                response.raise_for_status()

                # Validate content type
                content_type = response.headers.get("content-type", "").lower()
                if not content_type.startswith("image/"):
                    logger.warning(f"Invalid content type for {url}: {content_type}")
                    return None

                # Check file size (avoid downloading huge files)
                content_length = response.headers.get("content-length")
                if (
                    content_length and int(content_length) > 10 * 1024 * 1024
                ):  # 10MB limit
                    logger.warning(f"Image too large: {url} ({content_length} bytes)")
                    return None

                # Download and process image
                image_data = response.content
                if len(image_data) < 1024:  # Skip very small images (likely broken)
                    logger.warning(f"Image too small: {url} ({len(image_data)} bytes)")
                    return None

                image = Image.open(io.BytesIO(image_data)).convert("RGB")

                # Validate image dimensions
                if image.size[0] < 50 or image.size[1] < 50:
                    logger.warning(f"Image dimensions too small: {url} {image.size}")
                    return None

                return image

            except requests.exceptions.RequestException as e:
                if attempt < max_retries - 1:
                    wait_time = (2**attempt) + random.uniform(0, 1)
                    logger.info(f"Retry {attempt + 1} for {url} in {wait_time:.1f}s")
                    time.sleep(wait_time)
                else:
                    logger.warning(
                        f"Failed to download image {url} after {max_retries} attempts: {e}"
                    )
            except Exception as e:
                logger.warning(f"Failed to process image {url}: {e}")
                break

        return None

    def download_and_process_image(
        self,
        url: str,
        query_features: torch.Tensor,
        query_image: Image.Image = None,
        include_patch_attention: bool = False,
    ) -> Dict[str, Any]:
        """Download and compute similarity for a single image"""
        candidate_image = self.download_image(url)
        if candidate_image is None:
            return None

        try:
            candidate_features = self.embedding_model.encode_image(candidate_image)
            similarity = self.embedding_model.compute_similarity(
                query_features, candidate_features
            )

            result = {"score": float(similarity), "url": url}

            # Add patch attention analysis if requested
            if include_patch_attention and query_image is not None:
                try:
                    analyzer = PatchAttentionAnalyzer(self.embedding_model)
                    patch_data = analyzer.compute_patch_similarities(
                        query_image, candidate_image
                    )
                    result["patch_attention"] = {
                        "overall_similarity": patch_data["overall_similarity"],
                        "query_grid_size": patch_data["query_grid_size"],
                        "candidate_grid_size": patch_data["candidate_grid_size"],
                        "attention_summary": analyzer.get_similarity_summary(
                            patch_data
                        ),
                    }
                except Exception as e:
                    logger.warning(f"Failed to compute patch attention for {url}: {e}")
                    result["patch_attention"] = None

            return result

        except Exception as e:
            logger.warning(f"Error processing candidate image {url}: {e}")
            return None

    def compute_similarity(
        self,
        query_image: Image.Image,
        candidate_urls: List[str],
        include_patch_attention: bool = False,
    ) -> List[Dict[str, Any]]:
        # Encode query image using the selected embedding model
        query_features = self.embedding_model.encode_image(query_image)

        results = []

        # Use ThreadPoolExecutor for concurrent downloading and processing
        max_workers = min(10, len(candidate_urls))  # Limit concurrent downloads

        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            # Submit all download tasks
            future_to_url = {
                executor.submit(
                    self.download_and_process_image,
                    url,
                    query_features,
                    query_image,
                    include_patch_attention,
                ): url
                for url in candidate_urls
            }

            # Process completed downloads with rate limiting
            for future in as_completed(future_to_url):
                url = future_to_url[future]
                try:
                    result = future.result()
                    if result is not None:
                        results.append(result)

                        # Stop early if we have enough good results (unless patch attention is needed)
                        target_count = 5 if include_patch_attention else 20
                        if len(results) >= target_count:
                            # Cancel remaining futures
                            for remaining_future in future_to_url:
                                remaining_future.cancel()
                            break

                except Exception as e:
                    logger.warning(f"Error in concurrent processing for {url}: {e}")

                # Small delay to be respectful to servers
                time.sleep(0.1)

        # Sort by similarity score (highest first)
        results.sort(key=lambda x: x["score"], reverse=True)

        final_count = 3 if include_patch_attention else 15
        return results[:final_count]


# Global variable to store search engine instance
search_engine = None


def get_search_engine(embedding_model: str = "clip") -> TattooSearchEngine:
    """Get or create search engine instance with specified embedding model."""
    global search_engine
    if (
        search_engine is None
        or search_engine.embedding_model.get_model_name().lower() != embedding_model
    ):
        search_engine = TattooSearchEngine(embedding_model)
    return search_engine


@app.post("/search")
async def search_tattoos(
    file: UploadFile = File(...),
    embedding_model: str = Query(
        default="clip", description="Embedding model to use (clip, dinov2, siglip)"
    ),
    include_patch_attention: bool = Query(
        default=False, description="Include patch-level attention analysis"
    ),
):
    if not file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="File must be an image")

    try:
        # Validate embedding model
        available_models = EmbeddingModelFactory.get_available_models()
        if embedding_model not in available_models:
            raise HTTPException(
                status_code=400,
                detail=f"Invalid embedding model. Available: {available_models}",
            )

        # Get search engine with specified embedding model
        engine = get_search_engine(embedding_model)

        # Read and process the uploaded image
        image_data = await file.read()
        query_image = Image.open(io.BytesIO(image_data)).convert("RGB")

        # Generate caption
        logger.info("Generating caption...")
        caption = engine.generate_caption(query_image)
        logger.info(f"Generated caption: {caption}")

        # Search for candidate images
        logger.info("Searching for candidate images...")
        candidate_urls = engine.search_images(caption, max_results=100)

        if not candidate_urls:
            return {
                "caption": caption,
                "results": [],
                "embedding_model": engine.embedding_model.get_model_name(),
            }

        # Compute similarities and rank
        logger.info("Computing similarities...")
        results = engine.compute_similarity(
            query_image, candidate_urls, include_patch_attention
        )

        return {
            "caption": caption,
            "results": results,
            "embedding_model": engine.embedding_model.get_model_name(),
            "patch_attention_enabled": include_patch_attention,
        }

    except Exception as e:
        logger.error(f"Error processing request: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/analyze-attention")
async def analyze_patch_attention(
    query_file: UploadFile = File(...),
    candidate_url: str = Query(
        ..., description="URL of the candidate image to compare"
    ),
    embedding_model: str = Query(
        default="clip", description="Embedding model to use (clip, dinov2, siglip)"
    ),
    include_visualizations: bool = Query(
        default=True, description="Include attention visualizations"
    ),
):
    """Analyze patch-level attention between query image and a specific candidate image."""
    if not query_file.content_type.startswith("image/"):
        raise HTTPException(status_code=400, detail="Query file must be an image")

    try:
        # Validate embedding model
        available_models = EmbeddingModelFactory.get_available_models()
        if embedding_model not in available_models:
            raise HTTPException(
                status_code=400,
                detail=f"Invalid embedding model. Available: {available_models}",
            )

        # Get search engine with specified embedding model
        engine = get_search_engine(embedding_model)

        # Read query image
        query_image_data = await query_file.read()
        query_image = Image.open(io.BytesIO(query_image_data)).convert("RGB")

        # Download candidate image
        candidate_image = engine.download_image(candidate_url)
        if candidate_image is None:
            raise HTTPException(
                status_code=400, detail="Failed to download candidate image"
            )

        # Analyze patch attention
        analyzer = PatchAttentionAnalyzer(engine.embedding_model)
        similarity_data = analyzer.compute_patch_similarities(
            query_image, candidate_image
        )

        result = {
            "query_image_size": query_image.size,
            "candidate_image_size": candidate_image.size,
            "candidate_url": candidate_url,
            "embedding_model": engine.embedding_model.get_model_name(),
            "similarity_analysis": analyzer.get_similarity_summary(similarity_data),
            "attention_matrix_shape": similarity_data["attention_matrix"].shape,
            "top_correspondences": similarity_data["top_correspondences"][
                :10
            ],  # Top 10
        }

        # Add visualizations if requested
        if include_visualizations:
            try:
                attention_heatmap = analyzer.visualize_attention_heatmap(
                    query_image, candidate_image, similarity_data
                )
                top_correspondences_viz = analyzer.visualize_top_correspondences(
                    query_image, candidate_image, similarity_data
                )

                result["visualizations"] = {
                    "attention_heatmap": f"data:image/png;base64,{attention_heatmap}",
                    "top_correspondences": f"data:image/png;base64,{top_correspondences_viz}",
                }
            except Exception as e:
                logger.warning(f"Failed to generate visualizations: {e}")
                result["visualizations"] = None

        return result

    except Exception as e:
        logger.error(f"Error analyzing patch attention: {e}")
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/models")
async def get_available_models():
    """Get list of available embedding models and their configurations."""
    models = EmbeddingModelFactory.get_available_models()
    configs = get_default_model_configs()
    return {"available_models": models, "model_configs": configs}


@app.get("/health")
async def health_check():
    return {"status": "healthy"}


if __name__ == "__main__":
    import uvicorn

    port = int(os.getenv("PORT", 8000))

    uvicorn.run(app, host="0.0.0.0", port=port)