Spaces:
Build error
Build error
Removed image model
Browse files
app.py
CHANGED
|
@@ -2,11 +2,10 @@ import streamlit as st
|
|
| 2 |
from flask.Emotion_spotting_service import _Emotion_spotting_service
|
| 3 |
from flask.Genre_spotting_service import _Genre_spotting_service
|
| 4 |
from flask.Beat_tracking_service import _Beat_tracking_service
|
| 5 |
-
from diffusers import StableDiffusionPipeline
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
|
| 9 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '4'
|
| 10 |
emo_list = []
|
| 11 |
gen_list = []
|
| 12 |
tempo_list = []
|
|
@@ -24,11 +23,11 @@ def load_beat_model():
|
|
| 24 |
beat_service = _Beat_tracking_service()
|
| 25 |
return beat_service
|
| 26 |
|
| 27 |
-
@st.cache_resource
|
| 28 |
-
def load_image_model():
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
|
| 34 |
if 'emotion' not in st.session_state:
|
|
@@ -43,7 +42,7 @@ if 'beat' not in st.session_state:
|
|
| 43 |
emotion_service = load_emo_model()
|
| 44 |
genre_service = load_genre_model()
|
| 45 |
beat_service = load_beat_model()
|
| 46 |
-
image_service = load_image_model()
|
| 47 |
|
| 48 |
st.title("Music2Image webpage")
|
| 49 |
user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
|
|
@@ -73,7 +72,7 @@ if st.session_state.emotion != None and st.session_state.genre != None and st.se
|
|
| 73 |
st.caption("Text description of your music file")
|
| 74 |
text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
|
| 75 |
st.text(text_output)
|
| 76 |
-
if text_output:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 2 |
from flask.Emotion_spotting_service import _Emotion_spotting_service
|
| 3 |
from flask.Genre_spotting_service import _Genre_spotting_service
|
| 4 |
from flask.Beat_tracking_service import _Beat_tracking_service
|
| 5 |
+
#from diffusers import StableDiffusionPipeline
|
| 6 |
import torch
|
| 7 |
import os
|
| 8 |
|
|
|
|
| 9 |
emo_list = []
|
| 10 |
gen_list = []
|
| 11 |
tempo_list = []
|
|
|
|
| 23 |
beat_service = _Beat_tracking_service()
|
| 24 |
return beat_service
|
| 25 |
|
| 26 |
+
# @st.cache_resource
|
| 27 |
+
# def load_image_model():
|
| 28 |
+
# pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16).to("cuda")
|
| 29 |
+
# pipeline.load_lora_weights("Weights/pytorch_lora_weights.safetensors", weight_name="pytorch_lora_weights.safetensors")
|
| 30 |
+
# return pipeline
|
| 31 |
|
| 32 |
|
| 33 |
if 'emotion' not in st.session_state:
|
|
|
|
| 42 |
emotion_service = load_emo_model()
|
| 43 |
genre_service = load_genre_model()
|
| 44 |
beat_service = load_beat_model()
|
| 45 |
+
# image_service = load_image_model()
|
| 46 |
|
| 47 |
st.title("Music2Image webpage")
|
| 48 |
user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
|
|
|
|
| 72 |
st.caption("Text description of your music file")
|
| 73 |
text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
|
| 74 |
st.text(text_output)
|
| 75 |
+
# if text_output:
|
| 76 |
+
# if st.button("Generate image from text description"):
|
| 77 |
+
# image = image_service(text_output)
|
| 78 |
+
# st.image(image)
|