|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import torch |
|
|
import spaces |
|
|
|
|
|
from PIL import Image |
|
|
from diffusers import FlowMatchEulerDiscreteScheduler |
|
|
from optimization import optimize_pipeline_ |
|
|
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline |
|
|
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel |
|
|
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 |
|
|
|
|
|
from huggingface_hub import InferenceClient |
|
|
import math |
|
|
|
|
|
import os |
|
|
import base64 |
|
|
import json |
|
|
|
|
|
SYSTEM_PROMPT = ''' |
|
|
# Edit Instruction Rewriter |
|
|
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. |
|
|
|
|
|
Please strictly follow the rewriting rules below: |
|
|
|
|
|
## 1. General Principles |
|
|
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language. |
|
|
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. |
|
|
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. |
|
|
- All added objects or modifications must align with the logic and style of the scene in the input images. |
|
|
- If multiple sub-images are to be generated, describe the content of each sub-image individually. |
|
|
|
|
|
## 2. Task-Type Handling Rules |
|
|
|
|
|
### 1. Add, Delete, Replace Tasks |
|
|
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. |
|
|
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: |
|
|
> Original: "Add an animal" |
|
|
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" |
|
|
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. |
|
|
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. |
|
|
|
|
|
### 2. Text Editing Tasks |
|
|
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization. |
|
|
- Both adding new text and replacing existing text are text replacement tasks, For example: |
|
|
- Replace "xx" to "yy" |
|
|
- Replace the mask / bounding box to "yy" |
|
|
- Replace the visual object to "yy" |
|
|
- Specify text position, color, and layout only if user has required. |
|
|
- If font is specified, keep the original language of the font. |
|
|
|
|
|
### 3. Human Editing Tasks |
|
|
- Make the smallest changes to the given user's prompt. |
|
|
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually. |
|
|
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject’s identity consistency.** |
|
|
> Original: "Add eyebrows to the face" |
|
|
> Rewritten: "Slightly thicken the person’s eyebrows with little change, look natural." |
|
|
|
|
|
### 4. Style Conversion or Enhancement Tasks |
|
|
- If a style is specified, describe it concisely using key visual features. For example: |
|
|
> Original: "Disco style" |
|
|
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors" |
|
|
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction. |
|
|
- **Colorization tasks (including old photo restoration) must use the fixed template:** |
|
|
"Restore and colorize the old photo." |
|
|
- Clearly specify the object to be modified. For example: |
|
|
> Original: Modify the subject in Picture 1 to match the style of Picture 2. |
|
|
> Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions. |
|
|
|
|
|
### 5. Material Replacement |
|
|
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style." |
|
|
- For text material replacement, use the fixed template: |
|
|
"Change the material of text "xxxx" to laser style" |
|
|
|
|
|
### 6. Logo/Pattern Editing |
|
|
- Material replacement should preserve the original shape and structure as much as possible. For example: |
|
|
> Original: "Convert to sapphire material" |
|
|
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure" |
|
|
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example: |
|
|
> Original: "Migrate the logo in the image to a new scene" |
|
|
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure" |
|
|
|
|
|
### 7. Multi-Image Tasks |
|
|
- Rewritten prompts must clearly point out which image’s element is being modified. For example: |
|
|
> Original: "Replace the subject of picture 1 with the subject of picture 2" |
|
|
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2’s background unchanged" |
|
|
- For stylization tasks, describe the reference image’s style in the rewritten prompt, while preserving the visual content of the source image. |
|
|
|
|
|
## 3. Rationale and Logic Check |
|
|
- Resolve contradictory instructions: e.g., “Remove all trees but keep all trees” requires logical correction. |
|
|
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.). |
|
|
|
|
|
# Output Format Example |
|
|
```json |
|
|
{ |
|
|
"Rewritten": "..." |
|
|
} |
|
|
''' |
|
|
|
|
|
def polish_prompt_hf(prompt, img): |
|
|
""" |
|
|
Rewrites the prompt using a Hugging Face InferenceClient. |
|
|
""" |
|
|
|
|
|
api_key = os.environ.get("HF_TOKEN") |
|
|
if not api_key: |
|
|
print("Warning: HF_TOKEN not set. Falling back to original prompt.") |
|
|
return prompt |
|
|
|
|
|
try: |
|
|
|
|
|
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" |
|
|
client = InferenceClient( |
|
|
provider="cerebras", |
|
|
api_key=api_key, |
|
|
) |
|
|
|
|
|
|
|
|
sys_promot = "you are a helpful assistant, you should provide useful answers to users." |
|
|
messages = [ |
|
|
{"role": "system", "content": sys_promot}, |
|
|
{"role": "user", "content": []}] |
|
|
for img in img_list: |
|
|
messages[1]["content"].append( |
|
|
{"image": f"data:image/png;base64,{encode_image(img)}"}) |
|
|
messages[1]["content"].append({"text": f"{prompt}"}) |
|
|
|
|
|
|
|
|
completion = client.chat.completions.create( |
|
|
model="Qwen/Qwen3-235B-A22B-Instruct-2507", |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
|
|
|
result = completion.choices[0].message.content |
|
|
|
|
|
|
|
|
if '{"Rewritten"' in result: |
|
|
try: |
|
|
|
|
|
result = result.replace('```json', '').replace('```', '') |
|
|
result_json = json.loads(result) |
|
|
polished_prompt = result_json.get('Rewritten', result) |
|
|
except: |
|
|
polished_prompt = result |
|
|
else: |
|
|
polished_prompt = result |
|
|
|
|
|
polished_prompt = polished_prompt.strip().replace("\n", " ") |
|
|
return polished_prompt |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during API call to Hugging Face: {e}") |
|
|
|
|
|
return prompt |
|
|
|
|
|
|
|
|
|
|
|
def encode_image(pil_image): |
|
|
import io |
|
|
buffered = io.BytesIO() |
|
|
pil_image.save(buffered, format="PNG") |
|
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
|
|
|
|
|
dtype = torch.bfloat16 |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
|
scheduler_config = { |
|
|
"base_image_seq_len": 256, |
|
|
"base_shift": math.log(3), |
|
|
"invert_sigmas": False, |
|
|
"max_image_seq_len": 8192, |
|
|
"max_shift": math.log(3), |
|
|
"num_train_timesteps": 1000, |
|
|
"shift": 1.0, |
|
|
"shift_terminal": None, |
|
|
"stochastic_sampling": False, |
|
|
"time_shift_type": "exponential", |
|
|
"use_beta_sigmas": False, |
|
|
"use_dynamic_shifting": True, |
|
|
"use_exponential_sigmas": False, |
|
|
"use_karras_sigmas": False, |
|
|
} |
|
|
|
|
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) |
|
|
|
|
|
|
|
|
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", |
|
|
scheduler=scheduler, |
|
|
torch_dtype=dtype).to(device) |
|
|
pipe.load_lora_weights( |
|
|
"lightx2v/Qwen-Image-Lightning", |
|
|
weight_name="Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors" |
|
|
) |
|
|
pipe.fuse_lora() |
|
|
|
|
|
|
|
|
pipe.transformer.__class__ = QwenImageTransformer2DModel |
|
|
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=300) |
|
|
def infer( |
|
|
images, |
|
|
prompt, |
|
|
seed=42, |
|
|
randomize_seed=False, |
|
|
true_guidance_scale=1.0, |
|
|
num_inference_steps=8, |
|
|
height=None, |
|
|
width=None, |
|
|
rewrite_prompt=True, |
|
|
num_images_per_prompt=1, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
""" |
|
|
Generates an image using the local Qwen-Image diffusers pipeline. |
|
|
""" |
|
|
|
|
|
negative_prompt = " " |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
|
|
|
pil_images = [] |
|
|
if images is not None: |
|
|
for item in images: |
|
|
try: |
|
|
if isinstance(item[0], Image.Image): |
|
|
pil_images.append(item[0].convert("RGB")) |
|
|
elif isinstance(item[0], str): |
|
|
pil_images.append(Image.open(item[0]).convert("RGB")) |
|
|
elif hasattr(item, "name"): |
|
|
pil_images.append(Image.open(item.name).convert("RGB")) |
|
|
except Exception: |
|
|
continue |
|
|
|
|
|
if height==256 and width==256: |
|
|
height, width = None, None |
|
|
print(f"Calling pipeline with prompt: '{prompt}'") |
|
|
print(f"Negative Prompt: '{negative_prompt}'") |
|
|
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") |
|
|
if rewrite_prompt and len(pil_images) > 0: |
|
|
prompt = polish_prompt_hf(prompt, pil_images) |
|
|
print(f"Rewritten Prompt: {prompt}") |
|
|
|
|
|
|
|
|
|
|
|
image = pipe( |
|
|
image=pil_images if len(pil_images) > 0 else None, |
|
|
prompt=prompt, |
|
|
height=height, |
|
|
width=width, |
|
|
negative_prompt=negative_prompt, |
|
|
num_inference_steps=num_inference_steps, |
|
|
generator=generator, |
|
|
true_cfg_scale=true_guidance_scale, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
).images |
|
|
|
|
|
return image, seed |
|
|
|
|
|
|
|
|
examples = [] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 1024px; |
|
|
} |
|
|
#logo-title { |
|
|
text-align: center; |
|
|
} |
|
|
#logo-title img { |
|
|
width: 400px; |
|
|
} |
|
|
#edit_text{margin-top: -62px !important} |
|
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.HTML(""" |
|
|
<div id="logo-title"> |
|
|
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> |
|
|
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">2509 Fast, 8-steps with Lightning LoRA</h2> |
|
|
</div> |
|
|
""") |
|
|
gr.Markdown(""" |
|
|
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. |
|
|
This demo uses the [Qwen-Image-Lightning v2](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA for accelerated inference. |
|
|
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers. |
|
|
""") |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
input_images = gr.Gallery(label="Input Images", |
|
|
show_label=False, |
|
|
type="pil", |
|
|
interactive=True) |
|
|
|
|
|
|
|
|
result = gr.Gallery(label="Result", show_label=False, type="pil") |
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
placeholder="describe the edit instruction", |
|
|
container=False, |
|
|
) |
|
|
run_button = gr.Button("Edit!", variant="primary") |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
true_guidance_scale = gr.Slider( |
|
|
label="True guidance scale", |
|
|
minimum=1.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=1.0 |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="Number of inference steps", |
|
|
minimum=1, |
|
|
maximum=40, |
|
|
step=1, |
|
|
value=8, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="Height", |
|
|
minimum=256, |
|
|
maximum=2048, |
|
|
step=8, |
|
|
value=None, |
|
|
) |
|
|
|
|
|
width = gr.Slider( |
|
|
label="Width", |
|
|
minimum=256, |
|
|
maximum=2048, |
|
|
step=8, |
|
|
value=None, |
|
|
) |
|
|
|
|
|
|
|
|
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False) |
|
|
|
|
|
|
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
input_images, |
|
|
prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
true_guidance_scale, |
|
|
num_inference_steps, |
|
|
height, |
|
|
width, |
|
|
rewrite_prompt, |
|
|
], |
|
|
outputs=[result, seed], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |