|
|
import cv2 |
|
|
import torch |
|
|
import random |
|
|
import numpy as np |
|
|
|
|
|
import spaces |
|
|
|
|
|
import PIL |
|
|
from PIL import Image |
|
|
from typing import Tuple |
|
|
|
|
|
import diffusers |
|
|
from diffusers.utils import load_image |
|
|
from diffusers.models import ControlNetModel |
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
from insightface.app import FaceAnalysis |
|
|
|
|
|
from style_template import styles |
|
|
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps |
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
from depth_anything.dpt import DepthAnything |
|
|
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
import torch.nn.functional as F |
|
|
from torchvision.transforms import Compose |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 |
|
|
STYLE_NAMES = list(styles.keys()) |
|
|
DEFAULT_STYLE_NAME = "(No style)" |
|
|
enable_lcm_arg = False |
|
|
|
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
hf_hub_download(repo_id="Super-shuhe/InstantID-FaceID-6M", filename="controlnet/config.json", local_dir="./checkpoints") |
|
|
hf_hub_download( |
|
|
repo_id="Super-shuhe/InstantID-FaceID-6M", |
|
|
filename="controlnet/diffusion_pytorch_model.safetensors", |
|
|
local_dir="./checkpoints", |
|
|
) |
|
|
hf_hub_download(repo_id="Super-shuhe/InstantID-FaceID-6M", filename="pytorch_model.bin", local_dir="./checkpoints") |
|
|
|
|
|
|
|
|
app = FaceAnalysis( |
|
|
name="antelopev2", |
|
|
root="./", |
|
|
providers=["CPUExecutionProvider"], |
|
|
) |
|
|
app.prepare(ctx_id=0, det_size=(640, 640)) |
|
|
|
|
|
|
|
|
|
|
|
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval() |
|
|
|
|
|
transform = Compose([ |
|
|
Resize( |
|
|
width=518, |
|
|
height=518, |
|
|
resize_target=False, |
|
|
keep_aspect_ratio=True, |
|
|
ensure_multiple_of=14, |
|
|
resize_method='lower_bound', |
|
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
|
), |
|
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
PrepareForNet(), |
|
|
]) |
|
|
|
|
|
|
|
|
face_adapter = f"./checkpoints/pytorch_model.bin" |
|
|
controlnet_path = f"./checkpoints/controlnet" |
|
|
|
|
|
|
|
|
controlnet_identitynet = ControlNetModel.from_pretrained( |
|
|
controlnet_path, torch_dtype=dtype |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" |
|
|
controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_canny = ControlNetModel.from_pretrained( |
|
|
controlnet_canny_model, torch_dtype=dtype |
|
|
).to(device) |
|
|
controlnet_depth = ControlNetModel.from_pretrained( |
|
|
controlnet_depth_model, torch_dtype=dtype |
|
|
).to(device) |
|
|
|
|
|
def get_depth_map(image): |
|
|
|
|
|
image = np.array(image) / 255.0 |
|
|
|
|
|
h, w = image.shape[:2] |
|
|
|
|
|
image = transform({'image': image})['image'] |
|
|
image = torch.from_numpy(image).unsqueeze(0).to("cuda") |
|
|
|
|
|
with torch.no_grad(): |
|
|
depth = depth_anything(image) |
|
|
|
|
|
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] |
|
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
|
|
|
|
depth = depth.cpu().numpy().astype(np.uint8) |
|
|
|
|
|
depth_image = Image.fromarray(depth) |
|
|
|
|
|
return depth_image |
|
|
|
|
|
def get_canny_image(image, t1=100, t2=200): |
|
|
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
|
edges = cv2.Canny(image, t1, t2) |
|
|
return Image.fromarray(edges, "L") |
|
|
|
|
|
controlnet_map = { |
|
|
|
|
|
"canny": controlnet_canny, |
|
|
"depth": controlnet_depth, |
|
|
} |
|
|
controlnet_map_fn = { |
|
|
|
|
|
"canny": get_canny_image, |
|
|
"depth": get_depth_map, |
|
|
} |
|
|
|
|
|
pretrained_model_name_or_path = "SG161222/RealVisXL_V5.0" |
|
|
|
|
|
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
controlnet=[controlnet_identitynet], |
|
|
torch_dtype=dtype, |
|
|
safety_checker=None, |
|
|
feature_extractor=None, |
|
|
).to(device) |
|
|
|
|
|
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( |
|
|
pipe.scheduler.config |
|
|
) |
|
|
|
|
|
|
|
|
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") |
|
|
pipe.disable_lora() |
|
|
|
|
|
pipe.cuda() |
|
|
pipe.load_ip_adapter_instantid(face_adapter) |
|
|
pipe.image_proj_model.to("cuda") |
|
|
pipe.unet.to("cuda") |
|
|
|
|
|
def toggle_lcm_ui(value): |
|
|
if value: |
|
|
return ( |
|
|
gr.update(minimum=0, maximum=100, step=1, value=5), |
|
|
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5), |
|
|
) |
|
|
else: |
|
|
return ( |
|
|
gr.update(minimum=5, maximum=100, step=1, value=30), |
|
|
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5), |
|
|
) |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
return seed |
|
|
|
|
|
def remove_tips(): |
|
|
return gr.update(visible=False) |
|
|
|
|
|
def get_example(): |
|
|
case = [ |
|
|
[ |
|
|
"./examples/yann-lecun_resize.jpg", |
|
|
None, |
|
|
"a man", |
|
|
"Spring Festival", |
|
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
|
], |
|
|
[ |
|
|
"./examples/musk_resize.jpeg", |
|
|
"./examples/poses/pose2.jpg", |
|
|
"a man flying in the sky in Mars", |
|
|
"Mars", |
|
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
|
], |
|
|
[ |
|
|
"./examples/sam_resize.png", |
|
|
"./examples/poses/pose4.jpg", |
|
|
"a man doing a silly pose wearing a suite", |
|
|
"Jungle", |
|
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", |
|
|
], |
|
|
[ |
|
|
"./examples/schmidhuber_resize.png", |
|
|
"./examples/poses/pose3.jpg", |
|
|
"a man sit on a chair", |
|
|
"Neon", |
|
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
|
], |
|
|
[ |
|
|
"./examples/kaifu_resize.png", |
|
|
"./examples/poses/pose.jpg", |
|
|
"a man", |
|
|
"Vibrant Color", |
|
|
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
|
], |
|
|
] |
|
|
return case |
|
|
|
|
|
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt): |
|
|
return generate_image( |
|
|
face_file, |
|
|
pose_file, |
|
|
prompt, |
|
|
negative_prompt, |
|
|
style, |
|
|
20, |
|
|
0.8, |
|
|
0.4, |
|
|
|
|
|
0.0, |
|
|
0.0, |
|
|
[], |
|
|
5.0, |
|
|
42, |
|
|
"EulerDiscreteScheduler", |
|
|
False, |
|
|
True, |
|
|
) |
|
|
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
|
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
|
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
def resize_img( |
|
|
input_image, |
|
|
max_side=1280, |
|
|
min_side=1024, |
|
|
size=None, |
|
|
pad_to_max_side=False, |
|
|
mode=PIL.Image.BILINEAR, |
|
|
base_pixel_number=64, |
|
|
): |
|
|
w, h = input_image.size |
|
|
if size is not None: |
|
|
w_resize_new, h_resize_new = size |
|
|
else: |
|
|
ratio = min_side / min(h, w) |
|
|
w, h = round(ratio * w), round(ratio * h) |
|
|
ratio = max_side / max(h, w) |
|
|
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) |
|
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
|
|
if pad_to_max_side: |
|
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
|
offset_x = (max_side - w_resize_new) // 2 |
|
|
offset_y = (max_side - h_resize_new) // 2 |
|
|
res[ |
|
|
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new |
|
|
] = np.array(input_image) |
|
|
input_image = Image.fromarray(res) |
|
|
return input_image |
|
|
|
|
|
def apply_style( |
|
|
style_name: str, positive: str, negative: str = "" |
|
|
) -> Tuple[str, str]: |
|
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
|
return p.replace("{prompt}", positive), n + " " + negative |
|
|
|
|
|
@spaces.GPU |
|
|
def generate_image( |
|
|
face_image_path, |
|
|
pose_image_path, |
|
|
prompt, |
|
|
negative_prompt, |
|
|
style_name, |
|
|
num_steps, |
|
|
identitynet_strength_ratio, |
|
|
adapter_strength_ratio, |
|
|
|
|
|
canny_strength, |
|
|
depth_strength, |
|
|
controlnet_selection, |
|
|
guidance_scale, |
|
|
seed, |
|
|
scheduler, |
|
|
enable_LCM, |
|
|
enhance_face_region, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
|
|
|
if enable_LCM: |
|
|
pipe.scheduler = diffusers.LCMScheduler.from_config(pipe.scheduler.config) |
|
|
pipe.enable_lora() |
|
|
else: |
|
|
pipe.disable_lora() |
|
|
scheduler_class_name = scheduler.split("-")[0] |
|
|
|
|
|
add_kwargs = {} |
|
|
if len(scheduler.split("-")) > 1: |
|
|
add_kwargs["use_karras_sigmas"] = True |
|
|
if len(scheduler.split("-")) > 2: |
|
|
add_kwargs["algorithm_type"] = "sde-dpmsolver++" |
|
|
scheduler = getattr(diffusers, scheduler_class_name) |
|
|
pipe.scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs) |
|
|
|
|
|
if face_image_path is None: |
|
|
raise gr.Error( |
|
|
f"Cannot find any input face image! Please upload the face image" |
|
|
) |
|
|
|
|
|
if prompt is None: |
|
|
prompt = "a person" |
|
|
|
|
|
|
|
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
|
|
face_image = load_image(face_image_path) |
|
|
face_image = resize_img(face_image, max_side=1024) |
|
|
face_image_cv2 = convert_from_image_to_cv2(face_image) |
|
|
height, width, _ = face_image_cv2.shape |
|
|
|
|
|
|
|
|
face_info = app.get(face_image_cv2) |
|
|
|
|
|
if len(face_info) == 0: |
|
|
raise gr.Error( |
|
|
f"Unable to detect a face in the image. Please upload a different photo with a clear face." |
|
|
) |
|
|
|
|
|
face_info = sorted( |
|
|
face_info, |
|
|
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], |
|
|
)[ |
|
|
-1 |
|
|
] |
|
|
face_emb = face_info["embedding"] |
|
|
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) |
|
|
img_controlnet = face_image |
|
|
if pose_image_path is not None: |
|
|
pose_image = load_image(pose_image_path) |
|
|
pose_image = resize_img(pose_image, max_side=1024) |
|
|
img_controlnet = pose_image |
|
|
pose_image_cv2 = convert_from_image_to_cv2(pose_image) |
|
|
|
|
|
face_info = app.get(pose_image_cv2) |
|
|
|
|
|
if len(face_info) == 0: |
|
|
raise gr.Error( |
|
|
f"Cannot find any face in the reference image! Please upload another person image" |
|
|
) |
|
|
|
|
|
face_info = face_info[-1] |
|
|
face_kps = draw_kps(pose_image, face_info["kps"]) |
|
|
|
|
|
width, height = face_kps.size |
|
|
|
|
|
if enhance_face_region: |
|
|
control_mask = np.zeros([height, width, 3]) |
|
|
x1, y1, x2, y2 = face_info["bbox"] |
|
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) |
|
|
control_mask[y1:y2, x1:x2] = 255 |
|
|
control_mask = Image.fromarray(control_mask.astype(np.uint8)) |
|
|
else: |
|
|
control_mask = None |
|
|
|
|
|
if len(controlnet_selection) > 0: |
|
|
controlnet_scales = { |
|
|
|
|
|
"canny": canny_strength, |
|
|
"depth": depth_strength, |
|
|
} |
|
|
pipe.controlnet = MultiControlNetModel( |
|
|
[controlnet_identitynet] |
|
|
+ [controlnet_map[s] for s in controlnet_selection] |
|
|
) |
|
|
control_scales = [float(identitynet_strength_ratio)] + [ |
|
|
controlnet_scales[s] for s in controlnet_selection |
|
|
] |
|
|
control_images = [face_kps] + [ |
|
|
controlnet_map_fn[s](img_controlnet).resize((width, height)) |
|
|
for s in controlnet_selection |
|
|
] |
|
|
else: |
|
|
pipe.controlnet = controlnet_identitynet |
|
|
control_scales = float(identitynet_strength_ratio) |
|
|
control_images = face_kps |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
|
|
print("Start inference...") |
|
|
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") |
|
|
|
|
|
pipe.set_ip_adapter_scale(adapter_strength_ratio) |
|
|
images = pipe( |
|
|
prompt=prompt, |
|
|
negative_prompt=negative_prompt, |
|
|
image_embeds=face_emb, |
|
|
image=control_images, |
|
|
control_mask=control_mask, |
|
|
controlnet_conditioning_scale=control_scales, |
|
|
num_inference_steps=num_steps, |
|
|
guidance_scale=guidance_scale, |
|
|
height=height, |
|
|
width=width, |
|
|
generator=generator, |
|
|
).images |
|
|
|
|
|
return images[0], gr.update(visible=True) |
|
|
|
|
|
|
|
|
title = r""" |
|
|
# InstantID FaceID 6M: Zero-shot Identity-Preserving Generation in Seconds |
|
|
Demo for the `Super-shuhe/InstantID-FaceID-6M` trained on the [FaceID 6M](https://huggingface.co/datasets/Super-shuhe/FaceID-6M) open dataset of 6M faces |
|
|
""" |
|
|
|
|
|
article = r""" |
|
|
--- |
|
|
📝 **Citation** |
|
|
<br> |
|
|
If our work is helpful for your research or applications, please cite us via: |
|
|
```bibtex |
|
|
@article{wang2024instantid, |
|
|
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds}, |
|
|
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony}, |
|
|
journal={arXiv preprint arXiv:2401.07519}, |
|
|
year={2024} |
|
|
} |
|
|
``` |
|
|
📧 **Contact** |
|
|
<br> |
|
|
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. |
|
|
""" |
|
|
|
|
|
tips = r""" |
|
|
### Usage tips of InstantID |
|
|
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength." |
|
|
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength. |
|
|
3. If you find that text control is not as expected, decrease Adapter strength. |
|
|
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model. |
|
|
""" |
|
|
|
|
|
css = """ |
|
|
.gradio-container {width: 85% !important} |
|
|
""" |
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
gr.Markdown(title) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
with gr.Row(equal_height=True): |
|
|
|
|
|
face_file = gr.Image( |
|
|
label="Upload a photo of your face", type="filepath" |
|
|
) |
|
|
|
|
|
|
|
|
prompt = gr.Textbox( |
|
|
label="Prompt", |
|
|
info="Give simple prompt is enough to achieve good face fidelity", |
|
|
placeholder="A photo of a person", |
|
|
value="", |
|
|
) |
|
|
style = gr.Dropdown( |
|
|
label="Style template", |
|
|
choices=STYLE_NAMES, |
|
|
value=DEFAULT_STYLE_NAME, |
|
|
) |
|
|
|
|
|
submit = gr.Button("Submit", variant="primary") |
|
|
with gr.Accordion("Advanced options", open=False): |
|
|
enable_LCM = gr.Checkbox( |
|
|
label="Enable Fast Inference with LCM", value=enable_lcm_arg, |
|
|
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces", |
|
|
) |
|
|
|
|
|
|
|
|
identitynet_strength_ratio = gr.Slider( |
|
|
label="IdentityNet strength (for fidelity)", |
|
|
minimum=0, |
|
|
maximum=1.5, |
|
|
step=0.05, |
|
|
value=0.80, |
|
|
) |
|
|
adapter_strength_ratio = gr.Slider( |
|
|
label="Image adapter strength (for detail)", |
|
|
minimum=0, |
|
|
maximum=1.5, |
|
|
step=0.05, |
|
|
value=0.40, |
|
|
) |
|
|
negative_prompt = gr.Textbox( |
|
|
label="Negative Prompt", |
|
|
placeholder="low quality", |
|
|
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", |
|
|
) |
|
|
num_steps = gr.Slider( |
|
|
label="Number of sample steps", |
|
|
minimum=1, |
|
|
maximum=100, |
|
|
step=1, |
|
|
value=5 if enable_lcm_arg else 30, |
|
|
) |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.1, |
|
|
maximum=20.0, |
|
|
step=0.1, |
|
|
value=0.0 if enable_lcm_arg else 5.0, |
|
|
) |
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=42, |
|
|
) |
|
|
schedulers = [ |
|
|
"DEISMultistepScheduler", |
|
|
"HeunDiscreteScheduler", |
|
|
"EulerDiscreteScheduler", |
|
|
"DPMSolverMultistepScheduler", |
|
|
"DPMSolverMultistepScheduler-Karras", |
|
|
"DPMSolverMultistepScheduler-Karras-SDE", |
|
|
] |
|
|
scheduler = gr.Dropdown( |
|
|
label="Schedulers", |
|
|
choices=schedulers, |
|
|
value="EulerDiscreteScheduler", |
|
|
) |
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True) |
|
|
|
|
|
with gr.Accordion("Controlnet", open=False): |
|
|
|
|
|
pose_file = gr.Image( |
|
|
label="Upload a reference pose image (Optional)", |
|
|
type="filepath", |
|
|
) |
|
|
controlnet_selection = gr.CheckboxGroup( |
|
|
["canny", "depth"], label="Controlnet", value=[], |
|
|
info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
canny_strength = gr.Slider( |
|
|
label="Canny strength", |
|
|
minimum=0, |
|
|
maximum=1.5, |
|
|
step=0.05, |
|
|
value=0, |
|
|
) |
|
|
depth_strength = gr.Slider( |
|
|
label="Depth strength", |
|
|
minimum=0, |
|
|
maximum=1.5, |
|
|
step=0.05, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gallery = gr.Image(label="Generated Images") |
|
|
usage_tips = gr.Markdown( |
|
|
label="InstantID Usage Tips", value=tips, visible=False |
|
|
) |
|
|
|
|
|
submit.click( |
|
|
fn=remove_tips, |
|
|
outputs=usage_tips, |
|
|
).then( |
|
|
fn=randomize_seed_fn, |
|
|
inputs=[seed, randomize_seed], |
|
|
outputs=seed, |
|
|
queue=False, |
|
|
api_name=False, |
|
|
).then( |
|
|
fn=generate_image, |
|
|
inputs=[ |
|
|
face_file, |
|
|
pose_file, |
|
|
prompt, |
|
|
negative_prompt, |
|
|
style, |
|
|
num_steps, |
|
|
identitynet_strength_ratio, |
|
|
adapter_strength_ratio, |
|
|
|
|
|
canny_strength, |
|
|
depth_strength, |
|
|
controlnet_selection, |
|
|
guidance_scale, |
|
|
seed, |
|
|
scheduler, |
|
|
enable_LCM, |
|
|
enhance_face_region, |
|
|
], |
|
|
outputs=[gallery, usage_tips], |
|
|
) |
|
|
|
|
|
enable_LCM.input( |
|
|
fn=toggle_lcm_ui, |
|
|
inputs=[enable_LCM], |
|
|
outputs=[num_steps, guidance_scale], |
|
|
queue=False, |
|
|
) |
|
|
|
|
|
gr.Examples( |
|
|
examples=get_example(), |
|
|
inputs=[face_file, pose_file, prompt, style, negative_prompt], |
|
|
fn=run_for_examples, |
|
|
outputs=[gallery, usage_tips], |
|
|
cache_examples=True, |
|
|
) |
|
|
|
|
|
gr.Markdown(article) |
|
|
|
|
|
demo.queue(api_open=False) |
|
|
demo.launch() |