Spaces:
Running
Running
File size: 6,973 Bytes
d5c6d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import React, { useState, useRef, useCallback } from "react";
import {
AutoProcessor,
AutoModelForImageTextToText,
RawImage,
TextStreamer,
} from "@huggingface/transformers";
import type {
Tensor,
PixtralProcessor,
Ministral3ForCausalLM,
ProgressInfo,
} from "@huggingface/transformers";
import { VLMContext } from "./VLMContext";
const MODEL_ID = "mistralai/Ministral-3-3B-Instruct-2512-ONNX";
const MAX_NEW_TOKENS = 512;
export const VLMProvider: React.FC<React.PropsWithChildren> = ({
children,
}) => {
const [isLoaded, setIsLoaded] = useState(false);
const [isLoading, setIsLoading] = useState(false);
const [error, setError] = useState<string | null>(null);
const [imageSize, setImageSize] = useState(480);
const processorRef = useRef<PixtralProcessor | null>(null);
const modelRef = useRef<Ministral3ForCausalLM | null>(null);
const loadPromiseRef = useRef<Promise<void> | null>(null);
const inferenceLock = useRef(false);
const canvasRef = useRef<HTMLCanvasElement | null>(null);
const imageSizeRef = useRef(480);
const updateImageSize = useCallback((size: number) => {
setImageSize(size);
imageSizeRef.current = size;
if (processorRef.current?.image_processor) {
processorRef.current.image_processor.size = { longest_edge: size };
}
}, []);
const loadModel = useCallback(
async (onProgress?: (msg: string, percentage: number) => void) => {
if (isLoaded) {
onProgress?.("Model already loaded!", 100);
return;
}
if (loadPromiseRef.current) {
return loadPromiseRef.current;
}
setIsLoading(true);
setError(null);
loadPromiseRef.current = (async () => {
try {
onProgress?.("Loading processor...", 0);
processorRef.current = await AutoProcessor.from_pretrained(MODEL_ID);
processorRef.current.image_processor!.size = {
longest_edge: imageSizeRef.current,
};
onProgress?.("Processor loaded. Loading model...", 0);
const progressMap = new Map<string, number>();
const progressCallback = (info: ProgressInfo) => {
if (
info.status === "progress" &&
info.file.endsWith(".onnx_data")
) {
progressMap.set(info.file, info.loaded / info.total);
const total = Array.from(progressMap.values()).reduce(
(a, b) => a + b,
0,
);
const percentage = (total / 3) * 100; // 3 model files to download
onProgress?.("Downloading model...", percentage);
}
};
modelRef.current = await AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
{
dtype: {
embed_tokens: "fp16",
vision_encoder: "q4", // q4 is slightly faster than q4f16 (+ better quality)
decoder_model_merged: "q4f16",
},
device: "webgpu",
progress_callback: progressCallback,
},
);
onProgress?.("Model loaded successfully!", 100);
setIsLoaded(true);
} catch (e) {
const errorMessage = e instanceof Error ? e.message : String(e);
setError(errorMessage);
console.error("Error loading model:", e);
throw e;
} finally {
setIsLoading(false);
loadPromiseRef.current = null;
}
})();
return loadPromiseRef.current;
},
[isLoaded],
);
const runInference = useCallback(
async (
video: HTMLVideoElement,
instruction: string,
onTextUpdate?: (text: string) => void,
onStatsUpdate?: (stats: { tps?: number; ttft?: number }) => void,
): Promise<string> => {
if (inferenceLock.current) {
return ""; // Return empty string to signal a skip
}
inferenceLock.current = true;
if (!processorRef.current || !modelRef.current) {
throw new Error("Model/processor not loaded");
}
if (!canvasRef.current) {
canvasRef.current = document.createElement("canvas");
}
const canvas = canvasRef.current;
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
const ctx = canvas.getContext("2d", { willReadFrequently: true });
if (!ctx) throw new Error("Could not get canvas context");
ctx.drawImage(video, 0, 0);
const frame = ctx.getImageData(0, 0, canvas.width, canvas.height);
const rawImg = new RawImage(frame.data, frame.width, frame.height, 4);
const messages = [
{
role: "system",
content: `You are a helpful visual AI assistant. Respond concisely and accurately to the user's query in one sentence.`,
},
{ role: "user", content: `[IMG]${instruction}` },
];
const prompt = processorRef.current.apply_chat_template(messages);
const inputs = await processorRef.current(rawImg, prompt, {
add_special_tokens: false,
});
let streamed = "";
const start = performance.now();
let decodeStart: number | undefined;
let numTokens = 0;
const streamer = new TextStreamer(processorRef.current.tokenizer!, {
skip_prompt: true,
skip_special_tokens: true,
callback_function: (t: string) => {
if (streamed.length === 0) {
const latency = performance.now() - start;
onStatsUpdate?.({ ttft: latency });
}
streamed += t;
onTextUpdate?.(streamed.trim());
},
token_callback_function: () => {
decodeStart ??= performance.now();
numTokens++;
const elapsed = (performance.now() - decodeStart) / 1000;
if (elapsed > 0) {
onStatsUpdate?.({ tps: numTokens / elapsed });
}
},
});
const outputs = (await modelRef.current.generate({
...inputs,
max_new_tokens: MAX_NEW_TOKENS,
do_sample: false,
streamer,
repetition_penalty: 1.2,
})) as Tensor;
const generated = outputs.slice(null, [
inputs.input_ids.dims.at(-1),
null,
]);
const decodeEnd = performance.now();
if (decodeStart) {
const numTokens = generated.dims[1];
const tps = numTokens / ((decodeEnd - decodeStart) / 1000);
onStatsUpdate?.({ tps });
}
const decoded = processorRef.current.batch_decode(generated, {
skip_special_tokens: true,
});
inferenceLock.current = false;
return decoded[0].trim();
},
[],
);
return (
<VLMContext.Provider
value={{
isLoaded,
isLoading,
error,
loadModel,
runInference,
imageSize,
setImageSize: updateImageSize,
}}
>
{children}
</VLMContext.Provider>
);
};
export default VLMProvider;
|