update compute
Browse files- charmatch.py +25 -20
charmatch.py
CHANGED
|
@@ -87,30 +87,35 @@ class charmatch(evaluate.Metric):
|
|
| 87 |
# TODO: Download external resources if needed
|
| 88 |
pass
|
| 89 |
|
| 90 |
-
def _compute(self,
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
elif len(deduped) == 2:
|
| 96 |
-
if expected == output:
|
| 97 |
return 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
else:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
distance_to_expected = lev(output, expected)
|
| 104 |
-
print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
return {
|
| 115 |
-
"fscore":
|
| 116 |
}
|
|
|
|
| 87 |
# TODO: Download external resources if needed
|
| 88 |
pass
|
| 89 |
|
| 90 |
+
def _compute(self, inputs, expected, outputs):
|
| 91 |
+
def get_score(input, expected, output):
|
| 92 |
+
print(input, expected, output)
|
| 93 |
+
deduped = {input, expected, output}
|
| 94 |
+
if len(deduped) == 1:
|
|
|
|
|
|
|
| 95 |
return 1.0
|
| 96 |
+
elif len(deduped) == 2:
|
| 97 |
+
if expected == output:
|
| 98 |
+
return 1.0
|
| 99 |
+
else:
|
| 100 |
+
return 0.0
|
| 101 |
else:
|
| 102 |
+
expected_corrections = lev(input, expected)
|
| 103 |
+
distance_to_input = lev(input, output)
|
| 104 |
+
distance_to_expected = lev(output, expected)
|
| 105 |
+
print(f'dl(s,g): {expected_corrections}\ndl(s,h): {distance_to_input}\ndl(h,g): {distance_to_expected}')
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
true_positives = min(expected_corrections, max(0, (expected_corrections + distance_to_input - distance_to_expected))) / 2
|
| 108 |
+
print(f'T: {true_positives}')
|
| 109 |
|
| 110 |
+
precision = true_positives / distance_to_input
|
| 111 |
+
recall = true_positives / expected_corrections
|
| 112 |
+
f_05 = (1 + 0.5**2) * (precision * recall) / (0.5**2 * precision + recall)
|
| 113 |
+
print(f'P: {precision}\nR: {recall}')
|
| 114 |
+
|
| 115 |
+
return f_05
|
| 116 |
+
|
| 117 |
+
avg = sum([get_score(*row) for row in zip(inputs, expected, outputs)]) / len(inputs) * 100
|
| 118 |
|
| 119 |
return {
|
| 120 |
+
"fscore": avg
|
| 121 |
}
|