Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +51 -342
- requirements.txt +7 -8
app.py
CHANGED
|
@@ -1,342 +1,51 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
return
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
b, g, r = cv2.split(img)
|
| 53 |
-
r_avg, g_avg, b_avg = np.mean(r), np.mean(g), np.mean(b)
|
| 54 |
-
|
| 55 |
-
# Compute grayscale average
|
| 56 |
-
gray_avg = np.mean(gray)
|
| 57 |
-
|
| 58 |
-
# Adjust channels to balance
|
| 59 |
-
r = np.clip(r * (gray_avg / r_avg) if r_avg > 0 else r, 0, 255).astype(np.uint8)
|
| 60 |
-
g = np.clip(g * (gray_avg / g_avg) if g_avg > 0 else g, 0, 255).astype(np.uint8)
|
| 61 |
-
b = np.clip(b * (gray_avg / b_avg) if b_avg > 0 else b, 0, 255).astype(np.uint8)
|
| 62 |
-
|
| 63 |
-
return cv2.merge([b, g, r])
|
| 64 |
-
|
| 65 |
-
def simple_edge_enhance(img):
|
| 66 |
-
"""Enhance edges without color distortion"""
|
| 67 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
| 68 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 69 |
-
dilated = cv2.dilate(edges, np.ones((2,2), np.uint8))
|
| 70 |
-
|
| 71 |
-
# Create edge mask
|
| 72 |
-
edge_mask = dilated.astype(np.float32) / 255.0
|
| 73 |
-
|
| 74 |
-
# Sharpen image while preserving colors
|
| 75 |
-
blurred = cv2.GaussianBlur(img, (0, 0), 3)
|
| 76 |
-
sharpened = cv2.addWeighted(img, 1.5, blurred, -0.5, 0)
|
| 77 |
-
|
| 78 |
-
# Apply sharpening only to edges
|
| 79 |
-
edge_mask = cv2.cvtColor(edge_mask[:,:,np.newaxis], cv2.COLOR_GRAY2RGB)
|
| 80 |
-
enhanced = img * (1 - edge_mask) + sharpened * edge_mask
|
| 81 |
-
|
| 82 |
-
return enhanced.astype(np.uint8)
|
| 83 |
-
|
| 84 |
-
# ====================== MODEL ARCHITECTURE ======================
|
| 85 |
-
class SelfAttention(nn.Module):
|
| 86 |
-
def __init__(self, channels):
|
| 87 |
-
super().__init__()
|
| 88 |
-
self.query = nn.Conv2d(channels, channels, 1)
|
| 89 |
-
self.key = nn.Conv2d(channels, channels, 1)
|
| 90 |
-
self.value = nn.Conv2d(channels, channels, 1)
|
| 91 |
-
self.gamma = nn.Parameter(torch.zeros(1))
|
| 92 |
-
|
| 93 |
-
def forward(self, x):
|
| 94 |
-
batch, c, h, w = x.size()
|
| 95 |
-
q = self.query(x).view(batch, c, -1)
|
| 96 |
-
k = self.key(x).view(batch, c, -1).permute(0, 2, 1)
|
| 97 |
-
v = self.value(x).view(batch, c, -1)
|
| 98 |
-
|
| 99 |
-
attention = F.softmax(torch.bmm(q, k) / (c**0.5), dim=2)
|
| 100 |
-
out = torch.bmm(attention, v).view(batch, c, h, w)
|
| 101 |
-
return self.gamma * out + x
|
| 102 |
-
|
| 103 |
-
class ResidualBlock(nn.Module):
|
| 104 |
-
def __init__(self, channels):
|
| 105 |
-
super().__init__()
|
| 106 |
-
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 107 |
-
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 108 |
-
self.relu = nn.ReLU(inplace=True)
|
| 109 |
-
|
| 110 |
-
def forward(self, x):
|
| 111 |
-
residual = x
|
| 112 |
-
x = self.relu(self.conv1(x))
|
| 113 |
-
x = self.conv2(x)
|
| 114 |
-
return self.relu(x + residual)
|
| 115 |
-
|
| 116 |
-
class UltraEfficientSR(nn.Module):
|
| 117 |
-
def __init__(self):
|
| 118 |
-
super().__init__()
|
| 119 |
-
self.initial = nn.Conv2d(3, 64, 3, padding=1)
|
| 120 |
-
self.blocks = nn.Sequential(
|
| 121 |
-
ResidualBlock(64),
|
| 122 |
-
SelfAttention(64),
|
| 123 |
-
ResidualBlock(64)
|
| 124 |
-
)
|
| 125 |
-
self.upconv1 = nn.Conv2d(64, 256, 3, padding=1)
|
| 126 |
-
self.upconv2 = nn.Conv2d(64, 256, 3, padding=1)
|
| 127 |
-
self.pixel_shuffle = nn.PixelShuffle(2)
|
| 128 |
-
self.final = nn.Conv2d(64, 3, 3, padding=1)
|
| 129 |
-
|
| 130 |
-
# Identity color preserving layer
|
| 131 |
-
self.color_conv = nn.Conv2d(3, 3, 1)
|
| 132 |
-
self._initialize_weights()
|
| 133 |
-
|
| 134 |
-
def _initialize_weights(self):
|
| 135 |
-
for m in self.modules():
|
| 136 |
-
if isinstance(m, nn.Conv2d):
|
| 137 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
| 138 |
-
if m.bias is not None:
|
| 139 |
-
nn.init.zeros_(m.bias)
|
| 140 |
-
|
| 141 |
-
# Initialize color conv with identity matrix for color preservation
|
| 142 |
-
with torch.no_grad():
|
| 143 |
-
identity = torch.eye(3).reshape(3, 3, 1, 1)
|
| 144 |
-
self.color_conv.weight.copy_(identity)
|
| 145 |
-
if self.color_conv.bias is not None:
|
| 146 |
-
self.color_conv.bias.zero_()
|
| 147 |
-
|
| 148 |
-
def forward(self, x, scale_factor=2):
|
| 149 |
-
x = self.initial(x)
|
| 150 |
-
x = self.blocks(x)
|
| 151 |
-
|
| 152 |
-
if scale_factor == 2:
|
| 153 |
-
x = self.upconv1(x)
|
| 154 |
-
x = self.pixel_shuffle(x)
|
| 155 |
-
elif scale_factor == 3:
|
| 156 |
-
x = self.upconv1(x)
|
| 157 |
-
x = self.pixel_shuffle(x)
|
| 158 |
-
x = F.interpolate(x, scale_factor=1.5, mode='bicubic', align_corners=False)
|
| 159 |
-
elif scale_factor == 4:
|
| 160 |
-
x = self.upconv1(x)
|
| 161 |
-
x = self.pixel_shuffle(x)
|
| 162 |
-
x = self.upconv2(x)
|
| 163 |
-
x = self.pixel_shuffle(x)
|
| 164 |
-
|
| 165 |
-
x = self.final(x)
|
| 166 |
-
return self.color_conv(x)
|
| 167 |
-
|
| 168 |
-
# ====================== PROCESSING PIPELINE ======================
|
| 169 |
-
def process_tile(model, tile, scale_factor):
|
| 170 |
-
# Preserve original for color reference
|
| 171 |
-
original_tile = tile.copy()
|
| 172 |
-
|
| 173 |
-
# Process with model
|
| 174 |
-
tile_tensor = torch.tensor(tile/255.0, dtype=torch.float32).permute(2,0,1).unsqueeze(0)
|
| 175 |
-
with torch.no_grad():
|
| 176 |
-
output = model(tile_tensor, scale_factor)
|
| 177 |
-
|
| 178 |
-
# Get raw output
|
| 179 |
-
raw_output = output.squeeze().permute(1,2,0).clamp(0,1).numpy() * 255
|
| 180 |
-
|
| 181 |
-
# Color correction
|
| 182 |
-
color_corrected = preserve_original_colors(original_tile, raw_output.astype(np.uint8))
|
| 183 |
-
return color_corrected
|
| 184 |
-
|
| 185 |
-
def create_pyramid_weights(h, w):
|
| 186 |
-
y = np.linspace(0, 1, h)
|
| 187 |
-
x = np.linspace(0, 1, w)
|
| 188 |
-
xx, yy = np.meshgrid(x, y)
|
| 189 |
-
weights = np.minimum(np.minimum(xx, 1-xx), np.minimum(yy, 1-yy))
|
| 190 |
-
return np.minimum(1.0, weights * 4)[:,:,np.newaxis]
|
| 191 |
-
|
| 192 |
-
def process_image_with_tiling(model, image, scale_factor, tile_size=256, overlap=32):
|
| 193 |
-
h, w, c = image.shape
|
| 194 |
-
out_h, out_w = h*scale_factor, w*scale_factor
|
| 195 |
-
output = np.zeros((out_h, out_w, c), np.float32)
|
| 196 |
-
weight_map = np.zeros_like(output)
|
| 197 |
-
|
| 198 |
-
effective_step = tile_size - 2*overlap
|
| 199 |
-
for y in range(0, h, effective_step):
|
| 200 |
-
for x in range(0, w, effective_step):
|
| 201 |
-
y1, x1 = max(0, y-overlap), max(0, x-overlap)
|
| 202 |
-
y2, x2 = min(h, y+tile_size+overlap), min(w, x+tile_size+overlap)
|
| 203 |
-
|
| 204 |
-
tile = image[y1:y2, x1:x2]
|
| 205 |
-
processed = process_tile(model, tile, scale_factor)
|
| 206 |
-
|
| 207 |
-
out_y1, out_x1 = y1*scale_factor, x1*scale_factor
|
| 208 |
-
out_y2, out_x2 = y2*scale_factor, x2*scale_factor
|
| 209 |
-
|
| 210 |
-
# Create weights for this tile
|
| 211 |
-
weights = create_pyramid_weights(processed.shape[0], processed.shape[1])
|
| 212 |
-
|
| 213 |
-
output[out_y1:out_y2, out_x1:out_x2] += processed * weights
|
| 214 |
-
weight_map[out_y1:out_y2, out_x1:out_x2] += weights
|
| 215 |
-
|
| 216 |
-
valid_mask = weight_map > 0
|
| 217 |
-
output[valid_mask] /= weight_map[valid_mask]
|
| 218 |
-
return output.astype(np.uint8)
|
| 219 |
-
|
| 220 |
-
# ====================== CORE SYSTEM COMPONENTS ======================
|
| 221 |
-
class EnergyController:
|
| 222 |
-
def __init__(self):
|
| 223 |
-
self.available_threads = os.cpu_count()
|
| 224 |
-
|
| 225 |
-
def adjust_processing(self, image_size):
|
| 226 |
-
threads = max(1, min(self.available_threads, image_size//(1024**2)+1))
|
| 227 |
-
torch.set_num_threads(threads)
|
| 228 |
-
return threads
|
| 229 |
-
|
| 230 |
-
class CPUUpscaler:
|
| 231 |
-
def __init__(self):
|
| 232 |
-
self.model = torch.quantization.quantize_dynamic(
|
| 233 |
-
UltraEfficientSR(), {nn.Conv2d}, dtype=torch.qint8
|
| 234 |
-
).eval()
|
| 235 |
-
self.energy_ctrl = EnergyController()
|
| 236 |
-
|
| 237 |
-
def _calculate_optimal_tile_size(self, image):
|
| 238 |
-
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 239 |
-
edge_density = cv2.Laplacian(gray, cv2.CV_64F).var()
|
| 240 |
-
return 128 if edge_density > 500 else 256 if edge_density > 200 else 384
|
| 241 |
-
|
| 242 |
-
def upscale(self, image, scale_factor=2):
|
| 243 |
-
start_time = time.time()
|
| 244 |
-
|
| 245 |
-
# Input handling
|
| 246 |
-
if isinstance(image, Image.Image):
|
| 247 |
-
image_np = np.array(image)
|
| 248 |
-
else:
|
| 249 |
-
image_np = image.copy()
|
| 250 |
-
|
| 251 |
-
if image_np.shape[2] == 4:
|
| 252 |
-
image_np = image_np[:,:,:3]
|
| 253 |
-
|
| 254 |
-
# Force grayscale for B&W images
|
| 255 |
-
is_grayscale = self._is_grayscale_image(image_np)
|
| 256 |
-
if is_grayscale:
|
| 257 |
-
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
| 258 |
-
image_np = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
|
| 259 |
-
|
| 260 |
-
# Processing setup
|
| 261 |
-
threads_used = self.energy_ctrl.adjust_processing(image_np.size)
|
| 262 |
-
tile_size = self._calculate_optimal_tile_size(image_np)
|
| 263 |
-
|
| 264 |
-
# Save original for color reference
|
| 265 |
-
original_img = image_np.copy()
|
| 266 |
-
|
| 267 |
-
# Core processing
|
| 268 |
-
if max(image_np.shape[:2]) > tile_size:
|
| 269 |
-
output = process_image_with_tiling(self.model, image_np, scale_factor, tile_size)
|
| 270 |
-
else:
|
| 271 |
-
output = process_tile(self.model, image_np, scale_factor)
|
| 272 |
-
|
| 273 |
-
# Final color correction
|
| 274 |
-
output = preserve_original_colors(
|
| 275 |
-
cv2.resize(original_img, (output.shape[1], output.shape[0])),
|
| 276 |
-
output
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
# For B&W images, ensure true grayscale output
|
| 280 |
-
if is_grayscale:
|
| 281 |
-
gray = cv2.cvtColor(output, cv2.COLOR_RGB2GRAY)
|
| 282 |
-
output = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
|
| 283 |
-
|
| 284 |
-
# Final edge enhancement
|
| 285 |
-
output = simple_edge_enhance(output)
|
| 286 |
-
|
| 287 |
-
# Metrics
|
| 288 |
-
metrics = {
|
| 289 |
-
"processing_time": f"{time.time()-start_time:.2f}s",
|
| 290 |
-
"input_resolution": f"{image_np.shape[1]}x{image_np.shape[0]}",
|
| 291 |
-
"output_resolution": f"{output.shape[1]}x{output.shape[0]}",
|
| 292 |
-
"threads_used": threads_used,
|
| 293 |
-
"tile_size": tile_size,
|
| 294 |
-
"color_preservation": "Active"
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
return Image.fromarray(output), metrics
|
| 298 |
-
|
| 299 |
-
def _is_grayscale_image(self, img, threshold=5):
|
| 300 |
-
"""Detect if an image is effectively grayscale"""
|
| 301 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
| 302 |
-
b, g, r = cv2.split(img)
|
| 303 |
-
|
| 304 |
-
diff_r = np.abs(r.astype(np.float32) - gray.astype(np.float32))
|
| 305 |
-
diff_g = np.abs(g.astype(np.float32) - gray.astype(np.float32))
|
| 306 |
-
diff_b = np.abs(b.astype(np.float32) - gray.astype(np.float32))
|
| 307 |
-
|
| 308 |
-
total_diff = (np.mean(diff_r) + np.mean(diff_g) + np.mean(diff_b))/3
|
| 309 |
-
return total_diff < threshold
|
| 310 |
-
|
| 311 |
-
# ====================== GRADIO INTERFACE ======================
|
| 312 |
-
def create_interface():
|
| 313 |
-
upscaler = CPUUpscaler()
|
| 314 |
-
|
| 315 |
-
def process_image(input_img, scale_factor):
|
| 316 |
-
scale_map = {"2x":2, "3x":3, "4x":4}
|
| 317 |
-
output_img, metrics = upscaler.upscale(input_img, scale_map[scale_factor])
|
| 318 |
-
return output_img, [input_img, output_img], metrics
|
| 319 |
-
|
| 320 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 321 |
-
gr.Markdown("# Professional Image Upscaler")
|
| 322 |
-
with gr.Row():
|
| 323 |
-
with gr.Column(scale=1):
|
| 324 |
-
input_img = gr.Image(label="Input", type="pil")
|
| 325 |
-
scale_factor = gr.Radio(["2x","3x","4x"], value="2x", label="Scale")
|
| 326 |
-
upscale_btn = gr.Button("Upscale", variant="primary")
|
| 327 |
-
|
| 328 |
-
with gr.Column(scale=2):
|
| 329 |
-
output_img = gr.Image(label="Result", type="pil")
|
| 330 |
-
comparison = gr.Gallery(columns=2, height="auto")
|
| 331 |
-
metrics = gr.JSON(label="Metrics")
|
| 332 |
-
|
| 333 |
-
upscale_btn.click(
|
| 334 |
-
process_image,
|
| 335 |
-
[input_img, scale_factor],
|
| 336 |
-
[output_img, comparison, metrics]
|
| 337 |
-
)
|
| 338 |
-
|
| 339 |
-
return demo
|
| 340 |
-
|
| 341 |
-
if __name__ == "__main__":
|
| 342 |
-
create_interface().launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import StableDiffusionUpscalePipeline
|
| 4 |
+
|
| 5 |
+
# Load pipeline efficiently for CPU
|
| 6 |
+
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
| 7 |
+
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
| 8 |
+
model_id,
|
| 9 |
+
torch_dtype=torch.float32
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# 1. SLICING: Cuts attention computation into chunks to save RAM
|
| 13 |
+
pipe.enable_attention_slicing("max")
|
| 14 |
+
|
| 15 |
+
# 2. OFFLOADING: Moves unused model parts to RAM (critical for low VRAM/CPU)
|
| 16 |
+
# pipe.enable_sequential_cpu_offload() # Only works with GPU to save VRAM. On CPU-only machines, this is not needed/supported.
|
| 17 |
+
|
| 18 |
+
def upscale_diffusion_cpu(input_img, prompt="high quality, detailed"):
|
| 19 |
+
# Resize for the specific pipeline requirements if needed,
|
| 20 |
+
# but x4 upscaler handles low-res inputs naturally.
|
| 21 |
+
|
| 22 |
+
# CPU Inference is slow, so we limit steps
|
| 23 |
+
generator = torch.manual_seed(42)
|
| 24 |
+
output = pipe(
|
| 25 |
+
prompt=prompt,
|
| 26 |
+
image=input_img,
|
| 27 |
+
num_inference_steps=20, # Lower steps for CPU speed (usually 50+)
|
| 28 |
+
guidance_scale=7.0,
|
| 29 |
+
generator=generator
|
| 30 |
+
).images[0]
|
| 31 |
+
|
| 32 |
+
return output
|
| 33 |
+
|
| 34 |
+
desc = """
|
| 35 |
+
### Memory Efficient Diffusion Upscaling (CPU)
|
| 36 |
+
This demo uses **Attention Slicing** and **Sequential Offloading** to run a heavy Latent Diffusion model on CPU.
|
| 37 |
+
*Note: Diffusion on CPU is significantly slower than CNNs (EDSR) but generates hallucinations for missing details.*
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
iface = gr.Interface(
|
| 41 |
+
fn=upscale_diffusion_cpu,
|
| 42 |
+
inputs=[
|
| 43 |
+
gr.Image(type="pil", label="Low Res Input"),
|
| 44 |
+
gr.Textbox(label="Prompt (Optional)", value="highly detailed, 4k, sharp")
|
| 45 |
+
],
|
| 46 |
+
outputs=gr.Image(type="pil", label="Diffusion Upscaled"),
|
| 47 |
+
title="Memory Efficient Diffusion Upscaler",
|
| 48 |
+
description=desc
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
-
torch
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
scikit-image>=0.22.0
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
diffusers
|
| 3 |
+
transformers
|
| 4 |
+
accelerate
|
| 5 |
+
scipy
|
| 6 |
+
pillow
|
| 7 |
+
gradio
|
|
|