Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,104 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
-
import
|
| 8 |
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
torch_dtype
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
-
with gr.Row():
|
| 103 |
-
width = gr.Slider(
|
| 104 |
-
label="Width",
|
| 105 |
-
minimum=256,
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
height = gr.Slider(
|
| 112 |
-
label="Height",
|
| 113 |
-
minimum=256,
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import torch
|
| 4 |
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import cv2
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
+
from script import SatelliteModelGenerator
|
| 10 |
|
| 11 |
+
# Initialize models and device
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
dtype = torch.bfloat16
|
| 14 |
+
|
| 15 |
+
# Initialize FLUX model for satellite imagery
|
| 16 |
+
flux_pipe = DiffusionPipeline.from_pretrained(
|
| 17 |
+
"jbilcke-hf/flux-satellite",
|
| 18 |
+
torch_dtype=dtype
|
| 19 |
+
).to(device)
|
| 20 |
+
|
| 21 |
+
def generate_and_process_map(prompt: str) -> str | None:
|
| 22 |
+
"""Generate satellite image from prompt and convert to 3D model."""
|
| 23 |
+
try:
|
| 24 |
+
# Set dimensions
|
| 25 |
+
width = height = 1024
|
| 26 |
+
|
| 27 |
+
# Generate random seed
|
| 28 |
+
seed = np.random.randint(0, np.iinfo(np.int32).max)
|
| 29 |
+
|
| 30 |
+
# Set random seeds
|
| 31 |
+
torch.manual_seed(seed)
|
| 32 |
+
np.random.seed(seed)
|
| 33 |
+
|
| 34 |
+
# Generate satellite image using FLUX
|
| 35 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 36 |
+
generated_image = flux_pipe(
|
| 37 |
+
prompt=prompt,
|
| 38 |
+
width=width,
|
| 39 |
+
height=height,
|
| 40 |
+
num_inference_steps=30,
|
| 41 |
+
generator=generator,
|
| 42 |
+
guidance_scale=7.5
|
| 43 |
+
).images[0]
|
| 44 |
+
|
| 45 |
+
# Convert PIL Image to OpenCV format
|
| 46 |
+
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
|
| 47 |
+
|
| 48 |
+
# Initialize SatelliteModelGenerator
|
| 49 |
+
generator = SatelliteModelGenerator(building_height=0.09)
|
| 50 |
+
|
| 51 |
+
# Process image
|
| 52 |
+
print("Segmenting image...")
|
| 53 |
+
segmented_img = generator.segment_image(cv_image, window_size=5)
|
| 54 |
+
|
| 55 |
+
print("Estimating heights...")
|
| 56 |
+
height_map = generator.estimate_heights(cv_image, segmented_img)
|
| 57 |
+
|
| 58 |
+
# Generate mesh
|
| 59 |
+
print("Generating mesh...")
|
| 60 |
+
mesh = generator.generate_mesh(height_map, cv_image, add_walls=True)
|
| 61 |
+
|
| 62 |
+
# Export to GLB
|
| 63 |
+
temp_dir = tempfile.mkdtemp()
|
| 64 |
+
output_path = os.path.join(temp_dir, 'output.glb')
|
| 65 |
+
mesh.export(output_path)
|
| 66 |
+
|
| 67 |
+
return output_path
|
| 68 |
+
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Error during generation: {str(e)}")
|
| 71 |
+
import traceback
|
| 72 |
+
traceback.print_exc()
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
# Create Gradio interface
|
| 76 |
+
with gr.Blocks() as demo:
|
| 77 |
+
gr.Markdown("# Text to Map")
|
| 78 |
+
gr.Markdown("Generate 3D maps from text descriptions using FLUX and mesh generation.")
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
prompt_input = gr.Text(
|
| 82 |
+
label="Enter your prompt",
|
| 83 |
+
placeholder="eg. satellite view of downtown Manhattan"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 88 |
+
|
| 89 |
+
with gr.Row():
|
| 90 |
+
model_output = gr.Model3D(
|
| 91 |
+
label="Generated 3D Map",
|
| 92 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Event handler
|
| 96 |
+
generate_btn.click(
|
| 97 |
+
fn=generate_and_process_map,
|
| 98 |
+
inputs=[prompt_input],
|
| 99 |
+
outputs=[model_output],
|
| 100 |
+
api_name="generate"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
+
demo.queue().launch()
|