""" Training script for the RNN Meta-Controller. This module provides a complete training pipeline for the RNN-based meta-controller, including data generation/loading, model training with early stopping, validation, checkpointing, and comprehensive evaluation with per-class metrics. """ import argparse import json import logging from pathlib import Path from typing import Any import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from src.agents.meta_controller.rnn_controller import ( RNNMetaControllerModel, ) from src.training.data_generator import MetaControllerDataGenerator # Braintrust integration (optional) try: from src.observability.braintrust_tracker import BraintrustTracker, create_training_tracker BRAINTRUST_AVAILABLE = True except ImportError: BRAINTRUST_AVAILABLE = False BraintrustTracker = None # type: ignore class RNNTrainer: """ Trainer class for the RNN Meta-Controller model. Handles the complete training pipeline including data loading, training loops, validation, early stopping, model checkpointing, and comprehensive evaluation. Attributes: hidden_dim: Dimension of the GRU hidden state. num_layers: Number of GRU layers. dropout: Dropout probability for regularization. lr: Learning rate for the optimizer. batch_size: Batch size for training and evaluation. epochs: Maximum number of training epochs. early_stopping_patience: Number of epochs to wait for improvement before stopping. seed: Random seed for reproducibility. device: PyTorch device for computation. model: The RNNMetaControllerModel instance. optimizer: Adam optimizer for training. criterion: CrossEntropyLoss for classification. logger: Logger instance for progress reporting. Example: >>> trainer = RNNTrainer(hidden_dim=64, epochs=10) >>> generator = MetaControllerDataGenerator(seed=42) >>> features, labels = generator.generate_balanced_dataset(100) >>> X, y = generator.to_tensor_dataset(features, labels) >>> splits = generator.split_dataset(X, y) >>> history = trainer.train( ... train_data=(splits['X_train'], splits['y_train']), ... val_data=(splits['X_val'], splits['y_val']) ... ) """ AGENT_NAMES = ["hrm", "trm", "mcts"] LABEL_TO_INDEX = {"hrm": 0, "trm": 1, "mcts": 2} INDEX_TO_LABEL = {0: "hrm", 1: "trm", 2: "mcts"} def __init__( self, hidden_dim: int = 64, num_layers: int = 1, dropout: float = 0.1, lr: float = 1e-3, batch_size: int = 32, epochs: int = 10, early_stopping_patience: int = 3, seed: int = 42, device: str | None = None, braintrust_tracker: Any | None = None, ) -> None: """ Initialize the RNN trainer. Args: hidden_dim: Dimension of GRU hidden state. Defaults to 64. num_layers: Number of stacked GRU layers. Defaults to 1. dropout: Dropout probability for regularization. Defaults to 0.1. lr: Learning rate for Adam optimizer. Defaults to 1e-3. batch_size: Batch size for training and evaluation. Defaults to 32. epochs: Maximum number of training epochs. Defaults to 10. early_stopping_patience: Epochs to wait for improvement before early stopping. Defaults to 3. seed: Random seed for reproducibility. Defaults to 42. device: Device to run training on ('cpu', 'cuda', 'mps'). If None, auto-detects best available device. braintrust_tracker: Optional BraintrustTracker for experiment tracking. """ # Store hyperparameters self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout = dropout self.lr = lr self.batch_size = batch_size self.epochs = epochs self.early_stopping_patience = early_stopping_patience self.seed = seed # Set random seeds for reproducibility torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Auto-detect device if not specified if device is None: if torch.cuda.is_available(): self.device = torch.device("cuda") elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): self.device = torch.device("mps") else: self.device = torch.device("cpu") else: self.device = torch.device(device) # Setup logging self._setup_logging() self.logger.info(f"Initializing RNNTrainer with device: {self.device}") # Initialize model self.model = RNNMetaControllerModel( input_dim=10, # Fixed based on features_to_tensor output hidden_dim=hidden_dim, num_layers=num_layers, num_agents=len(self.AGENT_NAMES), dropout=dropout, ) self.model = self.model.to(self.device) self.logger.info(f"Model initialized: hidden_dim={hidden_dim}, num_layers={num_layers}, dropout={dropout}") # Setup optimizer self.optimizer = optim.Adam(self.model.parameters(), lr=lr) self.logger.info(f"Optimizer: Adam with lr={lr}") # Setup loss function self.criterion = nn.CrossEntropyLoss() self.logger.info("Loss function: CrossEntropyLoss") # Braintrust experiment tracking (optional) self.braintrust_tracker = braintrust_tracker if self.braintrust_tracker and hasattr(self.braintrust_tracker, "is_available"): if self.braintrust_tracker.is_available: self.logger.info("Braintrust experiment tracking enabled") self.braintrust_tracker.log_hyperparameters( { "hidden_dim": hidden_dim, "num_layers": num_layers, "dropout": dropout, "learning_rate": lr, "batch_size": batch_size, "max_epochs": epochs, "early_stopping_patience": early_stopping_patience, "seed": seed, "device": str(self.device), } ) else: self.logger.info("Braintrust tracker provided but not available") def _setup_logging(self) -> None: """ Setup logging configuration for the trainer. Creates a logger with console handler and appropriate formatting. """ self.logger = logging.getLogger("RNNTrainer") self.logger.setLevel(logging.INFO) # Avoid duplicate handlers if not self.logger.handlers: console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) console_handler.setFormatter(formatter) self.logger.addHandler(console_handler) def create_dataloader( self, X: torch.Tensor, y: torch.Tensor, batch_size: int | None = None, shuffle: bool = True, ) -> DataLoader: """ Create a PyTorch DataLoader from feature and label tensors. Args: X: Feature tensor of shape (N, 10). y: Label tensor of shape (N,). batch_size: Batch size for the DataLoader. If None, uses self.batch_size. shuffle: Whether to shuffle the data. Defaults to True. Returns: DataLoader instance for iterating over batches. Example: >>> trainer = RNNTrainer() >>> X = torch.randn(100, 10) >>> y = torch.randint(0, 3, (100,)) >>> loader = trainer.create_dataloader(X, y, batch_size=16) >>> len(loader) 7 """ if batch_size is None: batch_size = self.batch_size # Ensure tensors are on CPU for DataLoader if X.device != torch.device("cpu"): X = X.cpu() if y.device != torch.device("cpu"): y = y.cpu() dataset = TensorDataset(X, y) loader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0, # Use main process for data loading pin_memory=self.device.type == "cuda", ) return loader def train_epoch(self, train_loader: DataLoader) -> float: """ Train the model for one epoch. Args: train_loader: DataLoader providing training batches. Returns: Average training loss for the epoch. Example: >>> trainer = RNNTrainer() >>> X = torch.randn(100, 10) >>> y = torch.randint(0, 3, (100,)) >>> loader = trainer.create_dataloader(X, y) >>> loss = trainer.train_epoch(loader) >>> isinstance(loss, float) True """ self.model.train() total_loss = 0.0 num_batches = 0 for batch_X, batch_y in train_loader: # Move data to device batch_X = batch_X.to(self.device) batch_y = batch_y.to(self.device) # Zero gradients self.optimizer.zero_grad() # Forward pass logits = self.model(batch_X) # Compute loss loss = self.criterion(logits, batch_y) # Backward pass loss.backward() # Update weights self.optimizer.step() # Accumulate loss total_loss += loss.item() num_batches += 1 average_loss = total_loss / num_batches if num_batches > 0 else 0.0 return average_loss def validate(self, val_loader: DataLoader) -> tuple[float, float]: """ Evaluate the model on the validation set. Args: val_loader: DataLoader providing validation batches. Returns: Tuple of (average_loss, accuracy). - average_loss: Mean cross-entropy loss over validation set. - accuracy: Classification accuracy as a fraction [0, 1]. Example: >>> trainer = RNNTrainer() >>> X = torch.randn(50, 10) >>> y = torch.randint(0, 3, (50,)) >>> loader = trainer.create_dataloader(X, y, shuffle=False) >>> loss, acc = trainer.validate(loader) >>> 0.0 <= acc <= 1.0 True """ self.model.eval() total_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for batch_X, batch_y in val_loader: # Move data to device batch_X = batch_X.to(self.device) batch_y = batch_y.to(self.device) # Forward pass logits = self.model(batch_X) # Compute loss loss = self.criterion(logits, batch_y) total_loss += loss.item() # Compute accuracy predictions = torch.argmax(logits, dim=1) correct += (predictions == batch_y).sum().item() total += batch_y.size(0) num_batches = len(val_loader) average_loss = total_loss / num_batches if num_batches > 0 else 0.0 accuracy = correct / total if total > 0 else 0.0 return average_loss, accuracy def train( self, train_data: tuple[torch.Tensor, torch.Tensor], val_data: tuple[torch.Tensor, torch.Tensor], save_path: str | None = None, ) -> dict[str, Any]: """ Main training loop with early stopping and model checkpointing. Trains the model for the specified number of epochs, monitoring validation loss for early stopping. If save_path is provided, saves the best model checkpoint based on validation loss. Args: train_data: Tuple of (X_train, y_train) tensors. val_data: Tuple of (X_val, y_val) tensors. save_path: Optional path to save the best model checkpoint. Returns: Dictionary containing training history: - 'train_losses': List of training losses per epoch. - 'val_losses': List of validation losses per epoch. - 'val_accuracies': List of validation accuracies per epoch. - 'best_epoch': Epoch with best validation loss. - 'best_val_loss': Best validation loss achieved. - 'best_val_accuracy': Validation accuracy at best epoch. - 'stopped_early': Whether training stopped early. - 'total_epochs': Total number of epochs trained. Example: >>> trainer = RNNTrainer(epochs=5) >>> X_train = torch.randn(100, 10) >>> y_train = torch.randint(0, 3, (100,)) >>> X_val = torch.randn(20, 10) >>> y_val = torch.randint(0, 3, (20,)) >>> history = trainer.train((X_train, y_train), (X_val, y_val)) >>> 'train_losses' in history True >>> len(history['train_losses']) <= 5 True """ self.logger.info("Starting training...") self.logger.info(f"Training samples: {train_data[0].shape[0]}") self.logger.info(f"Validation samples: {val_data[0].shape[0]}") self.logger.info(f"Batch size: {self.batch_size}") self.logger.info(f"Max epochs: {self.epochs}") self.logger.info(f"Early stopping patience: {self.early_stopping_patience}") # Create data loaders train_loader = self.create_dataloader(train_data[0], train_data[1], shuffle=True) val_loader = self.create_dataloader(val_data[0], val_data[1], shuffle=False) # Initialize tracking variables train_losses: list[float] = [] val_losses: list[float] = [] val_accuracies: list[float] = [] best_val_loss = float("inf") best_val_accuracy = 0.0 best_epoch = 0 best_model_state = None patience_counter = 0 stopped_early = False # Training loop for epoch in range(1, self.epochs + 1): # Train for one epoch train_loss = self.train_epoch(train_loader) train_losses.append(train_loss) # Validate val_loss, val_accuracy = self.validate(val_loader) val_losses.append(val_loss) val_accuracies.append(val_accuracy) # Log progress self.logger.info( f"Epoch {epoch}/{self.epochs} - " f"Train Loss: {train_loss:.4f}, " f"Val Loss: {val_loss:.4f}, " f"Val Accuracy: {val_accuracy:.4f}" ) # Log to Braintrust if available if self.braintrust_tracker and hasattr(self.braintrust_tracker, "log_epoch_summary"): self.braintrust_tracker.log_epoch_summary( epoch=epoch, train_loss=train_loss, val_loss=val_loss, val_accuracy=val_accuracy, ) # Check for improvement if val_loss < best_val_loss: best_val_loss = val_loss best_val_accuracy = val_accuracy best_epoch = epoch best_model_state = self.model.state_dict().copy() patience_counter = 0 self.logger.info(f" -> New best validation loss: {val_loss:.4f}") # Save checkpoint if path provided if save_path: torch.save(best_model_state, save_path) self.logger.info(f" -> Model checkpoint saved to {save_path}") else: patience_counter += 1 self.logger.info(f" -> No improvement for {patience_counter} epoch(s)") # Check for early stopping if patience_counter >= self.early_stopping_patience: self.logger.info(f"Early stopping triggered at epoch {epoch}. Best epoch was {best_epoch}.") stopped_early = True break # Restore best model state if best_model_state is not None: self.model.load_state_dict(best_model_state) self.logger.info( f"Restored best model from epoch {best_epoch} " f"with val_loss={best_val_loss:.4f}, val_accuracy={best_val_accuracy:.4f}" ) # Final save if path provided and not already saved if save_path and best_model_state is not None: torch.save(best_model_state, save_path) self.logger.info(f"Final model saved to {save_path}") # Compile history history = { "train_losses": train_losses, "val_losses": val_losses, "val_accuracies": val_accuracies, "best_epoch": best_epoch, "best_val_loss": best_val_loss, "best_val_accuracy": best_val_accuracy, "stopped_early": stopped_early, "total_epochs": len(train_losses), } self.logger.info("Training completed!") self.logger.info(f"Best epoch: {best_epoch}") self.logger.info(f"Best validation loss: {best_val_loss:.4f}") self.logger.info(f"Best validation accuracy: {best_val_accuracy:.4f}") # Log final model artifact to Braintrust if self.braintrust_tracker and hasattr(self.braintrust_tracker, "log_model_artifact"): self.braintrust_tracker.log_model_artifact( model_path=str(save_path) if save_path else "in_memory", model_type="rnn", metrics={ "best_val_loss": best_val_loss, "best_val_accuracy": best_val_accuracy, "best_epoch": float(best_epoch), "total_epochs": float(len(train_losses)), }, ) return history def evaluate(self, test_loader: DataLoader) -> dict[str, Any]: """ Comprehensive evaluation on the test set. Computes overall metrics and per-class precision, recall, and F1-score. Args: test_loader: DataLoader providing test batches. Returns: Dictionary containing: - 'loss': Average cross-entropy loss. - 'accuracy': Overall classification accuracy. - 'per_class_metrics': Dictionary with per-class metrics: - For each agent ('hrm', 'trm', 'mcts'): - 'precision': Precision score. - 'recall': Recall score. - 'f1_score': F1 score. - 'support': Number of samples in this class. - 'confusion_matrix': 3x3 confusion matrix as nested list. - 'total_samples': Total number of test samples. Example: >>> trainer = RNNTrainer() >>> X = torch.randn(50, 10) >>> y = torch.randint(0, 3, (50,)) >>> loader = trainer.create_dataloader(X, y, shuffle=False) >>> results = trainer.evaluate(loader) >>> 'accuracy' in results True >>> 'per_class_metrics' in results True """ self.model.eval() total_loss = 0.0 all_predictions: list[int] = [] all_labels: list[int] = [] with torch.no_grad(): for batch_X, batch_y in test_loader: # Move data to device batch_X = batch_X.to(self.device) batch_y = batch_y.to(self.device) # Forward pass logits = self.model(batch_X) # Compute loss loss = self.criterion(logits, batch_y) total_loss += loss.item() # Get predictions predictions = torch.argmax(logits, dim=1) all_predictions.extend(predictions.cpu().tolist()) all_labels.extend(batch_y.cpu().tolist()) # Calculate overall metrics num_batches = len(test_loader) average_loss = total_loss / num_batches if num_batches > 0 else 0.0 correct = sum(p == label for p, label in zip(all_predictions, all_labels, strict=False)) total = len(all_labels) accuracy = correct / total if total > 0 else 0.0 # Calculate confusion matrix num_classes = len(self.AGENT_NAMES) confusion_matrix = [[0] * num_classes for _ in range(num_classes)] for pred, label in zip(all_predictions, all_labels, strict=False): confusion_matrix[label][pred] += 1 # Calculate per-class metrics per_class_metrics: dict[str, dict[str, float]] = {} for class_idx, agent_name in enumerate(self.AGENT_NAMES): # True positives: predicted as this class and actually this class tp = confusion_matrix[class_idx][class_idx] # False positives: predicted as this class but actually other class fp = sum(confusion_matrix[i][class_idx] for i in range(num_classes) if i != class_idx) # False negatives: actually this class but predicted as other class fn = sum(confusion_matrix[class_idx][j] for j in range(num_classes) if j != class_idx) # Support: total number of samples in this class support = sum(confusion_matrix[class_idx]) # Precision: TP / (TP + FP) precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0 # Recall: TP / (TP + FN) recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0 # F1 Score: 2 * (Precision * Recall) / (Precision + Recall) f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0 per_class_metrics[agent_name] = { "precision": precision, "recall": recall, "f1_score": f1_score, "support": support, } results = { "loss": average_loss, "accuracy": accuracy, "per_class_metrics": per_class_metrics, "confusion_matrix": confusion_matrix, "total_samples": total, } self.logger.info("Evaluation Results:") self.logger.info(f" Test Loss: {average_loss:.4f}") self.logger.info(f" Test Accuracy: {accuracy:.4f}") self.logger.info(f" Total Samples: {total}") self.logger.info(" Per-Class Metrics:") for agent_name, metrics in per_class_metrics.items(): self.logger.info( f" {agent_name}: " f"Precision={metrics['precision']:.4f}, " f"Recall={metrics['recall']:.4f}, " f"F1={metrics['f1_score']:.4f}, " f"Support={metrics['support']}" ) return results def main() -> None: """ Main entry point for training the RNN Meta-Controller. Parses command-line arguments, generates or loads dataset, trains the model, evaluates on test set, and saves results. """ parser = argparse.ArgumentParser( description="Train the RNN Meta-Controller for agent selection.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Model hyperparameters parser.add_argument( "--hidden_dim", type=int, default=64, help="Dimension of GRU hidden state", ) parser.add_argument( "--num_layers", type=int, default=1, help="Number of GRU layers", ) parser.add_argument( "--dropout", type=float, default=0.1, help="Dropout probability", ) # Training hyperparameters parser.add_argument( "--lr", type=float, default=1e-3, help="Learning rate for Adam optimizer", ) parser.add_argument( "--batch_size", type=int, default=32, help="Batch size for training and evaluation", ) parser.add_argument( "--epochs", type=int, default=10, help="Maximum number of training epochs", ) parser.add_argument( "--patience", type=int, default=3, help="Early stopping patience (epochs without improvement)", ) parser.add_argument( "--seed", type=int, default=42, help="Random seed for reproducibility", ) # Data parameters parser.add_argument( "--num_samples", type=int, default=3000, help="Number of samples to generate (per class for balanced dataset)", ) parser.add_argument( "--data_path", type=str, default=None, help="Path to load existing dataset (JSON format). If not provided, generates new data.", ) # Output parameters parser.add_argument( "--save_path", type=str, default="rnn_meta_controller.pt", help="Path to save the trained model", ) # Experiment tracking parser.add_argument( "--use_braintrust", action="store_true", help="Enable Braintrust experiment tracking", ) parser.add_argument( "--experiment_name", type=str, default=None, help="Custom experiment name for Braintrust (auto-generated if not provided)", ) args = parser.parse_args() # Setup logging for main logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger("train_rnn") logger.info("=" * 60) logger.info("RNN Meta-Controller Training") logger.info("=" * 60) # Print configuration logger.info("Configuration:") for arg_name, arg_value in vars(args).items(): logger.info(f" {arg_name}: {arg_value}") logger.info("") try: # Initialize data generator generator = MetaControllerDataGenerator(seed=args.seed) # Load or generate dataset if args.data_path and Path(args.data_path).exists(): logger.info(f"Loading dataset from {args.data_path}...") features_list, labels_list = generator.load_dataset(args.data_path) logger.info(f"Loaded {len(features_list)} samples") else: logger.info(f"Generating balanced dataset with {args.num_samples} samples per class...") features_list, labels_list = generator.generate_balanced_dataset(num_samples_per_class=args.num_samples) total_samples = len(features_list) logger.info(f"Generated {total_samples} total samples") # Optionally save generated dataset if args.data_path: logger.info(f"Saving generated dataset to {args.data_path}...") generator.save_dataset(features_list, labels_list, args.data_path) # Convert to tensors logger.info("Converting dataset to tensors...") X, y = generator.to_tensor_dataset(features_list, labels_list) logger.info(f"Feature tensor shape: {X.shape}") logger.info(f"Label tensor shape: {y.shape}") # Split dataset logger.info("Splitting dataset into train/val/test (70%/15%/15%)...") splits = generator.split_dataset(X, y, train_ratio=0.7, val_ratio=0.15) logger.info(f"Training set size: {splits['X_train'].shape[0]}") logger.info(f"Validation set size: {splits['X_val'].shape[0]}") logger.info(f"Test set size: {splits['X_test'].shape[0]}") logger.info("") # Initialize Braintrust tracker if enabled braintrust_tracker = None if args.use_braintrust and BRAINTRUST_AVAILABLE: logger.info("Initializing Braintrust experiment tracker...") braintrust_tracker = create_training_tracker( model_type="rnn", config={ "hidden_dim": args.hidden_dim, "num_layers": args.num_layers, "dropout": args.dropout, "lr": args.lr, "batch_size": args.batch_size, "epochs": args.epochs, "patience": args.patience, "seed": args.seed, "num_samples": args.num_samples, }, ) if braintrust_tracker.is_available: logger.info("Braintrust experiment tracking enabled") else: logger.info("Braintrust not available (check API key)") elif args.use_braintrust and not BRAINTRUST_AVAILABLE: logger.warning("Braintrust requested but not installed. Install with: pip install braintrust") # Initialize trainer logger.info("Initializing trainer...") trainer = RNNTrainer( hidden_dim=args.hidden_dim, num_layers=args.num_layers, dropout=args.dropout, lr=args.lr, batch_size=args.batch_size, epochs=args.epochs, early_stopping_patience=args.patience, seed=args.seed, braintrust_tracker=braintrust_tracker, ) logger.info("") # Train model logger.info("Starting training...") logger.info("-" * 60) history = trainer.train( train_data=(splits["X_train"], splits["y_train"]), val_data=(splits["X_val"], splits["y_val"]), save_path=args.save_path, ) logger.info("-" * 60) logger.info("") # Evaluate on test set logger.info("Evaluating on test set...") logger.info("-" * 60) test_loader = trainer.create_dataloader(splits["X_test"], splits["y_test"], shuffle=False) test_results = trainer.evaluate(test_loader) logger.info("-" * 60) logger.info("") # Save training history history_path = Path(args.save_path).with_suffix(".history.json") logger.info(f"Saving training history to {history_path}...") # Combine history and test results full_results = { "config": { "hidden_dim": args.hidden_dim, "num_layers": args.num_layers, "dropout": args.dropout, "lr": args.lr, "batch_size": args.batch_size, "epochs": args.epochs, "patience": args.patience, "seed": args.seed, "num_samples": args.num_samples, }, "training_history": history, "test_results": test_results, } with open(history_path, "w", encoding="utf-8") as f: json.dump(full_results, f, indent=2) logger.info(f"Training history saved to {history_path}") logger.info("") # Print final summary logger.info("=" * 60) logger.info("Training Summary") logger.info("=" * 60) logger.info(f"Model saved to: {args.save_path}") logger.info(f"History saved to: {history_path}") logger.info(f"Best validation accuracy: {history['best_val_accuracy']:.4f}") logger.info(f"Test accuracy: {test_results['accuracy']:.4f}") logger.info(f"Test loss: {test_results['loss']:.4f}") if history["stopped_early"]: logger.info(f"Training stopped early at epoch {history['total_epochs']}") else: logger.info(f"Training completed all {history['total_epochs']} epochs") logger.info("") logger.info("Per-class test performance:") for agent_name, metrics in test_results["per_class_metrics"].items(): logger.info( f" {agent_name}: F1={metrics['f1_score']:.4f}, " f"Precision={metrics['precision']:.4f}, " f"Recall={metrics['recall']:.4f}" ) # End Braintrust experiment if braintrust_tracker and hasattr(braintrust_tracker, "end_experiment"): experiment_url = braintrust_tracker.end_experiment() if experiment_url: logger.info(f"Braintrust experiment URL: {experiment_url}") logger.info("=" * 60) logger.info("Training completed successfully!") logger.info("=" * 60) except FileNotFoundError as e: logger.error(f"File not found: {e}") raise except ValueError as e: logger.error(f"Invalid value: {e}") raise except RuntimeError as e: logger.error(f"Runtime error: {e}") raise except Exception as e: logger.error(f"Unexpected error: {e}") raise if __name__ == "__main__": main()