ianshank
feat: add personality output and bug fixes
40ee6b4
"""
Educational MCTS demonstration using the production framework.
This demo uses the real MCTSEngine from src.framework.mcts.core to provide
an authentic learning experience while remaining accessible for demonstrations.
"""
from __future__ import annotations
import math
from typing import Any
from src.framework.mcts.core import MCTSEngine, MCTSNode, MCTSState
from src.framework.mcts.policies import RolloutPolicy, SelectionPolicy
class DemoRolloutPolicy(RolloutPolicy):
"""
Educational rollout policy for demo purposes.
Evaluates states based on:
- Depth of exploration (deeper = more thorough)
- Action quality (domain-specific heuristics)
- Exploration randomness
"""
def __init__(self, category: str, action_templates: dict[str, list[str]]):
"""
Initialize demo rollout policy.
Args:
category: Query category for heuristic evaluation
action_templates: Available action templates for scoring
"""
self.category = category
self.action_templates = action_templates
# Define key terms that indicate quality actions per category
self.quality_indicators = {
"architecture": ["scalability", "consistency", "requirements"],
"optimization": ["profile", "caching", "parallel"],
"database": ["patterns", "relationships", "scaling"],
"distributed": ["circuit", "retry", "bulkhead"],
"default": ["decompose", "constraints", "trade-offs"],
}
async def evaluate(
self,
state: MCTSState,
rng,
max_depth: int = 10,
) -> float:
"""
Evaluate a state through heuristic analysis.
This combines:
- Depth bonus: rewards thorough exploration
- Action quality: rewards domain-appropriate actions
- Noise: adds exploration randomness
Args:
state: State to evaluate
rng: Random number generator
max_depth: Maximum depth (unused in heuristic)
Returns:
Estimated value in [0, 1] range
"""
# Base value
base_value = 0.5
# Depth bonus: deeper exploration = more value (up to 0.3)
depth = state.features.get("depth", 0)
depth_bonus = min(depth * 0.1, 0.3)
# Action quality bonus
action_bonus = 0.0
last_action = state.features.get("last_action", "")
if last_action:
# Check if action contains quality indicators for this category
indicators = self.quality_indicators.get(self.category, self.quality_indicators["default"])
for term in indicators:
if term in last_action.lower():
action_bonus = 0.15
break
# Add exploration noise
noise = rng.uniform(-0.1, 0.1)
# Combine components
value = base_value + depth_bonus + action_bonus + noise
# Clamp to [0, 1]
return max(0.0, min(1.0, value))
class MCTSDemo:
"""
Educational MCTS demonstration using the production framework.
This class wraps the production MCTSEngine to provide:
- Simple, educational interface for demos
- Category-based action selection
- Tree visualization for learning
- Deterministic behavior with seeds
Unlike the old mock implementation, this uses the real MCTS algorithm
with all its features: UCB1 selection, progressive widening, caching, etc.
"""
def __init__(self, max_depth: int = 5):
"""
Initialize MCTS demo.
Args:
max_depth: Maximum tree depth for exploration
"""
self.max_depth = max_depth
# Action templates for different query types
# These provide domain-specific reasoning paths
self.action_templates = {
"architecture": [
"Consider microservices for scalability",
"Evaluate monolith for simplicity",
"Analyze team capabilities",
"Assess deployment requirements",
"Review data consistency needs",
],
"optimization": [
"Profile application hotspots",
"Implement caching layer",
"Use parallel processing",
"Optimize database queries",
"Reduce memory allocations",
],
"database": [
"Analyze query patterns",
"Consider data relationships",
"Evaluate consistency requirements",
"Plan for horizontal scaling",
"Assess read/write ratios",
],
"distributed": [
"Implement circuit breakers",
"Add retry mechanisms",
"Use message queues",
"Apply bulkhead pattern",
"Design for eventual consistency",
],
"default": [
"Decompose the problem",
"Identify constraints",
"Evaluate trade-offs",
"Consider alternatives",
"Validate assumptions",
],
}
def _categorize_query(self, query: str) -> str:
"""
Categorize query to select appropriate action templates.
Args:
query: User's input query
Returns:
Category name for action selection
"""
query_lower = query.lower()
if "architecture" in query_lower or "microservice" in query_lower:
return "architecture"
elif "optim" in query_lower or "performance" in query_lower:
return "optimization"
elif "database" in query_lower or "sql" in query_lower:
return "database"
elif "distribut" in query_lower or "fault" in query_lower:
return "distributed"
return "default"
def _create_action_generator(self, category: str):
"""
Create action generator function for this query category.
Args:
category: Query category
Returns:
Function that generates actions for a given state
"""
def action_generator(state: MCTSState) -> list[str]:
"""Generate available actions from current state."""
# Get category-specific actions
actions = self.action_templates.get(category, self.action_templates["default"])
# Filter out already-used actions (track via state features)
used_actions = state.features.get("used_actions", set())
available = [a for a in actions if a not in used_actions]
# If all actions used, allow re-exploring top 2
if not available:
return actions[:2]
return available
return action_generator
def _create_state_transition(self, category: str):
"""
Create state transition function for this query category.
Args:
category: Query category
Returns:
Function that computes next state from current state + action
"""
def state_transition(state: MCTSState, action: str) -> MCTSState:
"""Compute next state by applying action."""
# Track action history
action_history = list(state.features.get("action_history", []))
action_history.append(action)
# Track used actions
used_actions = set(state.features.get("used_actions", set()))
used_actions.add(action)
# Increment depth
depth = state.features.get("depth", 0) + 1
# Create new state ID from action history
state_id = " -> ".join(action_history)
# Build new state
new_state = MCTSState(
state_id=state_id,
features={
"action_history": action_history,
"used_actions": used_actions,
"depth": depth,
"last_action": action,
"category": category,
},
)
return new_state
return state_transition
def _generate_tree_visualization(self, root: MCTSNode, max_nodes: int = 20) -> str:
"""
Generate ASCII visualization of the MCTS tree.
This provides educational insight into the search process.
Args:
root: Root node of the tree
max_nodes: Maximum nodes to display
Returns:
ASCII art representation of the tree
"""
max_nodes = max(1, max_nodes)
lines = []
lines.append("MCTS Tree Visualization")
lines.append("=" * 50)
nodes_rendered = 0
def format_node(node: MCTSNode, prefix: str = "", is_last: bool = True) -> list[str]:
nonlocal nodes_rendered
result = []
# Node representation
connector = "└── " if is_last else "├── "
if nodes_rendered >= max_nodes:
result.append(f"{prefix}{connector}... (truncated)")
return result
nodes_rendered += 1
# Display action or state
node_str = f"{node.state.state_id[:30]}..."
if node.action:
node_str = f"{node.action[:25]}..."
stats = f"[V:{node.visits}, Q:{node.value:.3f}]"
result.append(f"{prefix}{connector}{node_str} {stats}")
# Recursively add children
new_prefix = prefix + (" " if is_last else "│ ")
# Limit children shown
children_to_show = node.children[:3]
for i, child in enumerate(children_to_show):
is_child_last = i == len(children_to_show) - 1
result.extend(format_node(child, new_prefix, is_child_last))
if len(node.children) > 3:
result.append(f"{new_prefix} ... and {len(node.children) - 3} more")
return result
# Start with root
lines.append(f"Root: {root.state.state_id[:40]}... [V:{root.visits}, Q:{root.value:.3f}]")
nodes_rendered += 1
for i, child in enumerate(root.children[:5]):
is_last = i == len(root.children[:5]) - 1
lines.extend(format_node(child, "", is_last))
if len(root.children) > 5:
lines.append(f"... and {len(root.children) - 5} more branches")
return "\n".join(lines)
async def search(
self,
query: str,
iterations: int = 25,
exploration_weight: float = 1.414,
seed: int | None = None,
) -> dict[str, Any]:
"""
Run MCTS search on the query using the production framework.
This method demonstrates the full MCTS algorithm:
1. Selection: UCB1-based tree traversal
2. Expansion: Progressive widening of nodes
3. Simulation: Heuristic evaluation (rollout)
4. Backpropagation: Value updates up the tree
Args:
query: The input query to analyze
iterations: Number of MCTS iterations (more = better but slower)
exploration_weight: UCB1 exploration constant (higher = more exploration)
seed: Random seed for deterministic results
Returns:
Dictionary with:
- best_action: Recommended next step
- best_value: Confidence in recommendation
- statistics: Search metrics and performance data
- tree_visualization: ASCII art of search tree
"""
# Determine query category
category = self._categorize_query(query)
# Initialize MCTS engine with production features
engine = MCTSEngine(
seed=seed if seed is not None else 42,
exploration_weight=exploration_weight,
progressive_widening_k=1.0, # Moderate expansion
progressive_widening_alpha=0.5,
max_parallel_rollouts=4,
cache_size_limit=10000,
)
# Create root state
root_state = MCTSState(
state_id=f"Query: {query[:50]}",
features={
"query": query,
"category": category,
"action_history": [],
"used_actions": set(),
"depth": 0,
"last_action": "",
},
)
# Create root node
root = MCTSNode(state=root_state, rng=engine.rng)
# Create domain-specific functions
action_generator = self._create_action_generator(category)
state_transition = self._create_state_transition(category)
rollout_policy = DemoRolloutPolicy(category, self.action_templates)
# Run MCTS search with production engine
best_action, stats = await engine.search(
root=root,
num_iterations=iterations,
action_generator=action_generator,
state_transition=state_transition,
rollout_policy=rollout_policy,
max_rollout_depth=self.max_depth,
selection_policy=SelectionPolicy.MAX_VISITS, # Most robust
)
# Extract best child info
best_child = None
if root.children:
best_child = max(root.children, key=lambda c: c.visits)
# Compile results for demo interface
result = {
"best_action": best_action or "No action found",
"best_value": round(best_child.value, 4) if best_child else 0.0,
"root_visits": root.visits,
"total_nodes": engine.get_cached_node_count(),
"max_depth_reached": engine.get_cached_tree_depth(),
"iterations_completed": iterations,
"exploration_weight": exploration_weight,
"seed": seed,
"category": category,
# Top actions sorted by visits
"top_actions": [
{
"action": child.action,
"visits": child.visits,
"value": round(child.value, 4),
"ucb1": round(
child.visits / root.visits if root.visits > 0 else 0.0, 4
), # Simplified UCB display
}
for child in sorted(root.children, key=lambda c: -c.visits)[:5]
],
# Framework statistics
"framework_stats": {
"cache_hits": stats.get("cache_hits", 0),
"cache_misses": stats.get("cache_misses", 0),
"cache_hit_rate": round(stats.get("cache_hit_rate", 0.0), 4),
"total_simulations": stats.get("total_simulations", 0),
},
# Educational visualization
"tree_visualization": self._generate_tree_visualization(root),
}
return result