Spaces:
Running
Running
File size: 18,098 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
"""
Unified Training Orchestrator for LangGraph Multi-Agent MCTS with DeepMind-Style Learning.
Coordinates:
- HRM Agent
- TRM Agent
- Neural MCTS
- Policy-Value Network
- Self-play data generation
- Training loops
- Evaluation
- Checkpointing
"""
import time
from collections.abc import Callable
from pathlib import Path
from typing import Any
import torch
import torch.nn as nn
from torch.cuda.amp import GradScaler, autocast
from ..agents.hrm_agent import HRMLoss, create_hrm_agent
from ..agents.trm_agent import TRMLoss, create_trm_agent
from ..framework.mcts.neural_mcts import GameState, NeuralMCTS, SelfPlayCollector
from ..models.policy_value_net import (
AlphaZeroLoss,
create_policy_value_network,
)
from .performance_monitor import PerformanceMonitor, TimingContext
from .replay_buffer import Experience, PrioritizedReplayBuffer, collate_experiences
from .system_config import SystemConfig
class UnifiedTrainingOrchestrator:
"""
Complete training pipeline integrating all framework components.
This orchestrator manages:
1. Self-play data generation using MCTS
2. Neural network training (policy-value)
3. HRM agent training
4. TRM agent training
5. Evaluation and checkpointing
6. Performance monitoring
"""
def __init__(
self,
config: SystemConfig,
initial_state_fn: Callable[[], GameState],
board_size: int = 19,
):
"""
Initialize training orchestrator.
Args:
config: System configuration
initial_state_fn: Function that returns initial game state
board_size: Board/grid size for spatial games
"""
self.config = config
self.initial_state_fn = initial_state_fn
self.board_size = board_size
# Setup device
self.device = config.device
torch.manual_seed(config.seed)
# Initialize performance monitor
self.monitor = PerformanceMonitor(
window_size=100,
enable_gpu_monitoring=(self.device != "cpu"),
)
# Initialize components
self._initialize_components()
# Training state
self.current_iteration = 0
self.best_win_rate = 0.0
self.best_model_path = None
# Setup paths
self._setup_paths()
# Setup experiment tracking
if config.use_wandb:
self._setup_wandb()
def _initialize_components(self):
"""Initialize all framework components."""
print("Initializing components...")
# Policy-Value Network
self.policy_value_net = create_policy_value_network(
config=self.config.neural_net,
board_size=self.board_size,
device=self.device,
)
print(f" ✓ Policy-Value Network: {self.policy_value_net.get_parameter_count():,} parameters")
# HRM Agent
self.hrm_agent = create_hrm_agent(self.config.hrm, self.device)
print(f" ✓ HRM Agent: {self.hrm_agent.get_parameter_count():,} parameters")
# TRM Agent
self.trm_agent = create_trm_agent(
self.config.trm, output_dim=self.config.neural_net.action_size, device=self.device
)
print(f" ✓ TRM Agent: {self.trm_agent.get_parameter_count():,} parameters")
# Neural MCTS
self.mcts = NeuralMCTS(
policy_value_network=self.policy_value_net,
config=self.config.mcts,
device=self.device,
)
print(" ✓ Neural MCTS initialized")
# Self-play collector
self.self_play_collector = SelfPlayCollector(mcts=self.mcts, config=self.config.mcts)
# Optimizers
self._setup_optimizers()
# Loss functions
self.pv_loss_fn = AlphaZeroLoss(value_loss_weight=1.0)
self.hrm_loss_fn = HRMLoss(ponder_weight=0.01)
self.trm_loss_fn = TRMLoss(
task_loss_fn=nn.MSELoss(),
supervision_weight_decay=self.config.trm.supervision_weight_decay,
)
# Replay buffer
self.replay_buffer = PrioritizedReplayBuffer(
capacity=self.config.training.buffer_size,
alpha=0.6,
beta_start=0.4,
beta_frames=self.config.training.games_per_iteration * 10,
)
# Mixed precision scaler
self.scaler = GradScaler() if self.config.use_mixed_precision else None
def _setup_optimizers(self):
"""Setup optimizers and learning rate schedulers."""
# Policy-Value optimizer
self.pv_optimizer = torch.optim.SGD(
self.policy_value_net.parameters(),
lr=self.config.training.learning_rate,
momentum=self.config.training.momentum,
weight_decay=self.config.training.weight_decay,
)
# HRM optimizer
self.hrm_optimizer = torch.optim.Adam(self.hrm_agent.parameters(), lr=1e-3)
# TRM optimizer
self.trm_optimizer = torch.optim.Adam(self.trm_agent.parameters(), lr=1e-3)
# Learning rate scheduler for policy-value network
if self.config.training.lr_schedule == "cosine":
self.pv_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.pv_optimizer, T_max=100)
elif self.config.training.lr_schedule == "step":
self.pv_scheduler = torch.optim.lr_scheduler.StepLR(
self.pv_optimizer,
step_size=self.config.training.lr_decay_steps,
gamma=self.config.training.lr_decay_gamma,
)
else:
self.pv_scheduler = None
def _setup_paths(self):
"""Setup directory paths."""
self.checkpoint_dir = Path(self.config.checkpoint_dir)
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
self.data_dir = Path(self.config.data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
self.log_dir = Path(self.config.log_dir)
self.log_dir.mkdir(parents=True, exist_ok=True)
def _setup_wandb(self):
"""Setup Weights & Biases experiment tracking."""
try:
import wandb
wandb.init(
project=self.config.wandb_project,
entity=self.config.wandb_entity,
config=self.config.to_dict(),
name=f"run_{time.strftime('%Y%m%d_%H%M%S')}",
)
print(" ✓ Weights & Biases initialized")
except ImportError:
print(" ⚠️ wandb not installed, skipping")
self.config.use_wandb = False
async def train_iteration(self, iteration: int) -> dict[str, Any]:
"""
Execute single training iteration.
Args:
iteration: Current iteration number
Returns:
Dictionary of metrics
"""
print(f"\n{'=' * 80}")
print(f"Training Iteration {iteration}")
print(f"{'=' * 80}")
metrics = {}
# Phase 1: Self-play data generation
print("\n[1/5] Generating self-play data...")
with TimingContext(self.monitor, "self_play_generation"):
game_data = await self._generate_self_play_data()
metrics["games_generated"] = len(game_data)
print(f" Generated {len(game_data)} training examples")
# Phase 2: Policy-Value network training
print("\n[2/5] Training Policy-Value Network...")
with TimingContext(self.monitor, "pv_training"):
pv_metrics = await self._train_policy_value_network()
metrics.update(pv_metrics)
# Phase 3: HRM agent training (optional, if using HRM)
if hasattr(self, "hrm_agent"):
print("\n[3/5] Training HRM Agent...")
with TimingContext(self.monitor, "hrm_training"):
hrm_metrics = await self._train_hrm_agent()
metrics.update(hrm_metrics)
# Phase 4: TRM agent training (optional, if using TRM)
if hasattr(self, "trm_agent"):
print("\n[4/5] Training TRM Agent...")
with TimingContext(self.monitor, "trm_training"):
trm_metrics = await self._train_trm_agent()
metrics.update(trm_metrics)
# Phase 5: Evaluation
print("\n[5/5] Evaluation...")
if iteration % self.config.training.checkpoint_interval == 0:
eval_metrics = await self._evaluate()
metrics.update(eval_metrics)
# Save checkpoint if improved
if eval_metrics.get("win_rate", 0) > self.best_win_rate:
self.best_win_rate = eval_metrics["win_rate"]
self._save_checkpoint(iteration, metrics, is_best=True)
print(f" ✓ New best model! Win rate: {self.best_win_rate:.2%}")
# Log metrics
self._log_metrics(iteration, metrics)
# Performance check
self.monitor.alert_if_slow()
return metrics
async def _generate_self_play_data(self) -> list[Experience]:
"""Generate training data from self-play games."""
num_games = self.config.training.games_per_iteration
# In production, this would use parallel actors
# For simplicity, we'll do sequential self-play
all_examples = []
for game_idx in range(num_games):
examples = await self.self_play_collector.play_game(
initial_state=self.initial_state_fn(),
temperature_threshold=self.config.mcts.temperature_threshold,
)
# Convert to Experience objects
for ex in examples:
all_examples.append(Experience(state=ex.state, policy=ex.policy_target, value=ex.value_target))
if (game_idx + 1) % 5 == 0:
print(f" Generated {game_idx + 1}/{num_games} games...")
# Add to replay buffer
self.replay_buffer.add_batch(all_examples)
return all_examples
async def _train_policy_value_network(self) -> dict[str, float]:
"""Train policy-value network on replay buffer data."""
if not self.replay_buffer.is_ready(self.config.training.batch_size):
print(" Replay buffer not ready, skipping...")
return {"policy_loss": 0.0, "value_loss": 0.0}
self.policy_value_net.train()
total_policy_loss = 0.0
total_value_loss = 0.0
num_batches = 10 # Train for 10 batches per iteration
for _ in range(num_batches):
# Sample batch
experiences, indices, weights = self.replay_buffer.sample(self.config.training.batch_size)
states, policies, values = collate_experiences(experiences)
states = states.to(self.device)
policies = policies.to(self.device)
values = values.to(self.device)
weights = torch.from_numpy(weights).to(self.device)
# Forward pass
if self.config.use_mixed_precision and self.scaler:
with autocast():
policy_logits, value_pred = self.policy_value_net(states)
loss, loss_dict = self.pv_loss_fn(policy_logits, value_pred, policies, values)
# Apply importance sampling weights
loss = (loss * weights).mean()
# Backward pass with mixed precision
self.pv_optimizer.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.pv_optimizer)
self.scaler.update()
else:
policy_logits, value_pred = self.policy_value_net(states)
loss, loss_dict = self.pv_loss_fn(policy_logits, value_pred, policies, values)
loss = (loss * weights).mean()
self.pv_optimizer.zero_grad()
loss.backward()
self.pv_optimizer.step()
# Update priorities in replay buffer
with torch.no_grad():
td_errors = torch.abs(value_pred.squeeze() - values)
self.replay_buffer.update_priorities(indices, td_errors.cpu().numpy())
total_policy_loss += loss_dict["policy"]
total_value_loss += loss_dict["value"]
# Log losses
self.monitor.log_loss(loss_dict["policy"], loss_dict["value"], loss_dict["total"])
# Step learning rate scheduler
if self.pv_scheduler:
self.pv_scheduler.step()
avg_policy_loss = total_policy_loss / num_batches
avg_value_loss = total_value_loss / num_batches
print(f" Policy Loss: {avg_policy_loss:.4f}, Value Loss: {avg_value_loss:.4f}")
return {"policy_loss": avg_policy_loss, "value_loss": avg_value_loss}
async def _train_hrm_agent(self) -> dict[str, float]:
"""Train HRM agent (placeholder for domain-specific implementation)."""
# This would require domain-specific data and tasks
# For now, return dummy metrics
return {"hrm_halt_step": 5.0, "hrm_ponder_cost": 0.1}
async def _train_trm_agent(self) -> dict[str, float]:
"""Train TRM agent (placeholder for domain-specific implementation)."""
# This would require domain-specific data and tasks
# For now, return dummy metrics
return {"trm_convergence_step": 8.0, "trm_final_residual": 0.01}
async def _evaluate(self) -> dict[str, float]:
"""Evaluate current model against baseline."""
# Simplified evaluation: play games against previous best
# In production, this would be more sophisticated
win_rate = 0.55 # Placeholder
return {
"win_rate": win_rate,
"eval_games": self.config.training.evaluation_games,
}
def _save_checkpoint(self, iteration: int, metrics: dict, is_best: bool = False):
"""Save model checkpoint."""
checkpoint = {
"iteration": iteration,
"policy_value_net": self.policy_value_net.state_dict(),
"hrm_agent": self.hrm_agent.state_dict(),
"trm_agent": self.trm_agent.state_dict(),
"pv_optimizer": self.pv_optimizer.state_dict(),
"hrm_optimizer": self.hrm_optimizer.state_dict(),
"trm_optimizer": self.trm_optimizer.state_dict(),
"config": self.config.to_dict(),
"metrics": metrics,
"best_win_rate": self.best_win_rate,
}
# Save regular checkpoint
path = self.checkpoint_dir / f"checkpoint_iter_{iteration}.pt"
torch.save(checkpoint, path)
print(f" ✓ Checkpoint saved: {path}")
# Save best model
if is_best:
best_path = self.checkpoint_dir / "best_model.pt"
torch.save(checkpoint, best_path)
self.best_model_path = best_path
print(f" ✓ Best model saved: {best_path}")
def _log_metrics(self, iteration: int, metrics: dict):
"""Log metrics to console and tracking systems."""
print(f"\n[Metrics Summary - Iteration {iteration}]")
for key, value in metrics.items():
if isinstance(value, float):
print(f" {key}: {value:.4f}")
else:
print(f" {key}: {value}")
# Log to wandb
if self.config.use_wandb:
try:
import wandb
wandb_metrics = self.monitor.export_to_wandb(iteration)
wandb_metrics.update(metrics)
wandb.log(wandb_metrics, step=iteration)
except Exception as e:
print(f" ⚠️ Failed to log to wandb: {e}")
async def train(self, num_iterations: int):
"""
Run complete training loop.
Args:
num_iterations: Number of training iterations
"""
print("\n" + "=" * 80)
print("Starting Training")
print("=" * 80)
print(f"Total iterations: {num_iterations}")
print(f"Device: {self.device}")
print(f"Mixed precision: {self.config.use_mixed_precision}")
start_time = time.time()
for iteration in range(1, num_iterations + 1):
self.current_iteration = iteration
try:
_ = await self.train_iteration(iteration)
# Check early stopping
if self._should_early_stop(iteration):
print("\n⚠️ Early stopping triggered")
break
except KeyboardInterrupt:
print("\n⚠️ Training interrupted by user")
break
except Exception as e:
print(f"\n❌ Error in iteration {iteration}: {e}")
import traceback
traceback.print_exc()
break
elapsed = time.time() - start_time
print(f"\n{'=' * 80}")
print(f"Training completed in {elapsed / 3600:.2f} hours")
print(f"Best win rate: {self.best_win_rate:.2%}")
print(f"{'=' * 80}\n")
# Print final performance summary
self.monitor.print_summary()
def _should_early_stop(self, iteration: int) -> bool:
"""Check early stopping criteria."""
# Placeholder: implement actual early stopping logic
_ = iteration # noqa: F841
return False
def load_checkpoint(self, path: str):
"""Load checkpoint from file."""
checkpoint = torch.load(path, map_location=self.device, weights_only=True)
self.policy_value_net.load_state_dict(checkpoint["policy_value_net"])
self.hrm_agent.load_state_dict(checkpoint["hrm_agent"])
self.trm_agent.load_state_dict(checkpoint["trm_agent"])
self.pv_optimizer.load_state_dict(checkpoint["pv_optimizer"])
self.hrm_optimizer.load_state_dict(checkpoint["hrm_optimizer"])
self.trm_optimizer.load_state_dict(checkpoint["trm_optimizer"])
self.current_iteration = checkpoint["iteration"]
self.best_win_rate = checkpoint.get("best_win_rate", 0.0)
print(f"✓ Loaded checkpoint from iteration {self.current_iteration}")
|