File size: 12,732 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""
Experience Replay Buffer for LangGraph Multi-Agent MCTS Training.

Implements:
- Prioritized experience replay
- Uniform sampling
- Efficient circular buffer storage
- Data augmentation support
"""

import random
from collections import deque
from dataclasses import dataclass

import numpy as np
import torch


@dataclass
class Experience:
    """Single training example from self-play."""

    state: torch.Tensor  # State representation
    policy: np.ndarray  # MCTS visit count distribution
    value: float  # Game outcome from this state's perspective
    metadata: dict = None  # Optional metadata (e.g., game_id, move_number)


class ReplayBuffer:
    """
    Simple uniform sampling replay buffer.

    Stores recent experiences in a circular buffer and samples uniformly.
    """

    def __init__(self, capacity: int):
        """
        Initialize replay buffer.

        Args:
            capacity: Maximum number of experiences to store
        """
        self.capacity = capacity
        self.buffer: deque = deque(maxlen=capacity)

    def add(self, experience: Experience):
        """Add an experience to the buffer."""
        self.buffer.append(experience)

    def add_batch(self, experiences: list[Experience]):
        """Add multiple experiences."""
        for exp in experiences:
            self.add(exp)

    def sample(self, batch_size: int) -> list[Experience]:
        """
        Sample a batch of experiences uniformly.

        Args:
            batch_size: Number of experiences to sample

        Returns:
            List of sampled experiences
        """
        if len(self.buffer) < batch_size:
            return random.sample(self.buffer, len(self.buffer))

        return random.sample(self.buffer, batch_size)

    def __len__(self) -> int:
        """Return current buffer size."""
        return len(self.buffer)

    def is_ready(self, min_size: int) -> bool:
        """Check if buffer has enough samples for training."""
        return len(self.buffer) >= min_size

    def clear(self):
        """Clear all experiences from buffer."""
        self.buffer.clear()


class PrioritizedReplayBuffer:
    """
    Prioritized Experience Replay (PER) buffer.

    Samples experiences with probability proportional to their TD error.
    Helps focus training on more informative examples.

    Based on: "Prioritized Experience Replay" (Schaul et al., 2015)
    """

    def __init__(
        self,
        capacity: int,
        alpha: float = 0.6,
        beta_start: float = 0.4,
        beta_frames: int = 100_000,
    ):
        """
        Initialize prioritized replay buffer.

        Args:
            capacity: Maximum buffer size
            alpha: Priority exponent (0 = uniform, 1 = full prioritization)
            beta_start: Initial importance sampling weight
            beta_frames: Number of frames to anneal beta to 1.0
        """
        self.capacity = capacity
        self.alpha = alpha
        self.beta_start = beta_start
        self.beta_frames = beta_frames
        self.frame = 1

        # Storage
        self.buffer: list[Experience | None] = [None] * capacity
        self.priorities: np.ndarray = np.zeros(capacity, dtype=np.float32)
        self.position = 0
        self.size = 0

    def _get_beta(self) -> float:
        """Get current beta value (anneals from beta_start to 1.0)."""
        return min(1.0, self.beta_start + (1.0 - self.beta_start) * self.frame / self.beta_frames)

    def add(self, experience: Experience, priority: float | None = None):
        """
        Add experience with priority.

        Args:
            experience: Experience to add
            priority: Priority value (uses max priority if None)
        """
        if priority is None:
            # New experiences get max priority
            priority = self.priorities.max() if self.size > 0 else 1.0

        self.buffer[self.position] = experience
        self.priorities[self.position] = priority**self.alpha

        self.position = (self.position + 1) % self.capacity
        self.size = min(self.size + 1, self.capacity)

    def add_batch(self, experiences: list[Experience], priorities: list[float] | None = None):
        """
        Add multiple experiences.

        Args:
            experiences: List of experiences
            priorities: Optional list of priorities (same length as experiences)
        """
        if priorities is None:
            priorities = [None] * len(experiences)

        for exp, priority in zip(experiences, priorities, strict=True):
            self.add(exp, priority)

    def sample(self, batch_size: int) -> tuple[list[Experience], np.ndarray, np.ndarray]:
        """
        Sample batch with prioritized sampling.

        Args:
            batch_size: Number of experiences to sample

        Returns:
            (experiences, indices, weights) tuple
            - experiences: Sampled experiences
            - indices: Buffer indices (for updating priorities)
            - weights: Importance sampling weights
        """
        if self.size < batch_size:
            batch_size = self.size

        # Compute sampling probabilities
        priorities = self.priorities[: self.size]
        probs = priorities / priorities.sum()

        # Sample indices
        indices = np.random.choice(self.size, batch_size, p=probs, replace=False)

        # Compute importance sampling weights
        beta = self._get_beta()
        weights = (self.size * probs[indices]) ** (-beta)
        weights = weights / weights.max()  # Normalize

        # Get experiences
        experiences = [self.buffer[idx] for idx in indices]

        self.frame += 1

        return experiences, indices, weights

    def update_priorities(self, indices: np.ndarray, priorities: np.ndarray):
        """
        Update priorities for sampled experiences.

        Args:
            indices: Buffer indices to update
            priorities: New priority values
        """
        for idx, priority in zip(indices, priorities, strict=True):
            self.priorities[idx] = (priority + 1e-6) ** self.alpha  # Small epsilon for stability

    def __len__(self) -> int:
        """Return current buffer size."""
        return self.size

    def is_ready(self, min_size: int) -> bool:
        """Check if buffer has enough samples."""
        return self.size >= min_size


class AugmentedReplayBuffer(ReplayBuffer):
    """
    Replay buffer with data augmentation support.

    Applies symmetries/transformations to states during sampling
    (e.g., rotations and flips for Go/chess boards).
    """

    def __init__(self, capacity: int, augmentation_fn=None):
        """
        Initialize augmented replay buffer.

        Args:
            capacity: Maximum buffer size
            augmentation_fn: Function to apply augmentations
                            Should take (state, policy) and return augmented versions
        """
        super().__init__(capacity)
        self.augmentation_fn = augmentation_fn

    def sample(self, batch_size: int, apply_augmentation: bool = True) -> list[Experience]:
        """
        Sample batch with optional augmentation.

        Args:
            batch_size: Number of experiences to sample
            apply_augmentation: Whether to apply data augmentation

        Returns:
            List of (possibly augmented) experiences
        """
        experiences = super().sample(batch_size)

        if apply_augmentation and self.augmentation_fn is not None:
            augmented = []
            for exp in experiences:
                aug_state, aug_policy = self.augmentation_fn(exp.state, exp.policy)
                augmented.append(
                    Experience(
                        state=aug_state,
                        policy=aug_policy,
                        value=exp.value,
                        metadata=exp.metadata,
                    )
                )
            return augmented

        return experiences


# Data augmentation utilities for board games
class BoardGameAugmentation:
    """
    Data augmentation for board games (Go, Chess, etc.).

    Applies symmetry transformations: rotations and reflections.
    """

    @staticmethod
    def rotate_90(state: torch.Tensor, policy: np.ndarray, board_size: int = 19) -> tuple[torch.Tensor, np.ndarray]:
        """
        Rotate state and policy 90 degrees clockwise.

        Args:
            state: State tensor [channels, height, width]
            policy: Policy array [action_size]
            board_size: Board dimension

        Returns:
            (rotated_state, rotated_policy) tuple
        """
        # Rotate state
        rotated_state = torch.rot90(state, k=1, dims=[1, 2])

        # Rotate policy (assuming policy corresponds to board positions)
        # This is game-specific; here's a simple version for square boards
        if len(policy) == board_size * board_size + 1:  # +1 for pass action
            policy_board = policy[:-1].reshape(board_size, board_size)
            rotated_policy_board = np.rot90(policy_board, k=1)
            rotated_policy = np.append(rotated_policy_board.flatten(), policy[-1])
        else:
            rotated_policy = policy  # Can't rotate, return original

        return rotated_state, rotated_policy

    @staticmethod
    def flip_horizontal(
        state: torch.Tensor, policy: np.ndarray, board_size: int = 19
    ) -> tuple[torch.Tensor, np.ndarray]:
        """Flip state and policy horizontally."""
        flipped_state = torch.flip(state, dims=[2])  # Flip width dimension

        if len(policy) == board_size * board_size + 1:
            policy_board = policy[:-1].reshape(board_size, board_size)
            flipped_policy_board = np.fliplr(policy_board)
            flipped_policy = np.append(flipped_policy_board.flatten(), policy[-1])
        else:
            flipped_policy = policy

        return flipped_state, flipped_policy

    @staticmethod
    def random_symmetry(
        state: torch.Tensor, policy: np.ndarray, board_size: int = 19
    ) -> tuple[torch.Tensor, np.ndarray]:
        """
        Apply random symmetry transformation.

        Randomly selects from:
        - Identity
        - 90° rotation
        - 180° rotation
        - 270° rotation
        - Horizontal flip
        - Vertical flip
        - Diagonal flip
        - Anti-diagonal flip
        """
        transform = random.randint(0, 7)

        if transform == 0:
            # Identity
            return state, policy
        elif transform == 1:
            # 90° rotation
            return BoardGameAugmentation.rotate_90(state, policy, board_size)
        elif transform == 2:
            # 180° rotation
            s, p = BoardGameAugmentation.rotate_90(state, policy, board_size)
            return BoardGameAugmentation.rotate_90(s, p, board_size)
        elif transform == 3:
            # 270° rotation
            s, p = BoardGameAugmentation.rotate_90(state, policy, board_size)
            s, p = BoardGameAugmentation.rotate_90(s, p, board_size)
            return BoardGameAugmentation.rotate_90(s, p, board_size)
        elif transform == 4:
            # Horizontal flip
            return BoardGameAugmentation.flip_horizontal(state, policy, board_size)
        elif transform == 5:
            # Vertical flip
            return torch.flip(state, dims=[1]), policy  # Simplified
        elif transform == 6:
            # Diagonal flip (transpose)
            return state.transpose(1, 2), policy  # Simplified
        else:
            # Anti-diagonal flip
            return torch.flip(state.transpose(1, 2), dims=[1, 2]), policy  # Simplified


def collate_experiences(experiences: list[Experience]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Collate list of experiences into batched tensors.

    Args:
        experiences: List of Experience objects

    Returns:
        (states, policies, values) tuple of batched tensors
    """
    states = torch.stack([exp.state for exp in experiences])

    # Handle variable-sized policies by padding to max size
    max_policy_size = max(len(exp.policy) for exp in experiences)
    padded_policies = []
    for exp in experiences:
        policy = exp.policy
        if len(policy) < max_policy_size:
            # Pad with zeros
            padded = np.zeros(max_policy_size, dtype=policy.dtype)
            padded[: len(policy)] = policy
            padded_policies.append(padded)
        else:
            padded_policies.append(policy)

    policies = torch.from_numpy(np.stack(padded_policies))
    values = torch.tensor([exp.value for exp in experiences], dtype=torch.float32)

    return states, policies, values