Spaces:
Running
Running
File size: 14,559 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
"""
Input validation models for LangGraph Multi-Agent MCTS framework.
Provides:
- Pydantic models for all external inputs
- Query sanitization and length limits
- Configuration validation
- MCP tool input validation with strict type checking
- Security-focused input processing
"""
import re
from datetime import datetime
from typing import Any
from pydantic import (
BaseModel,
ConfigDict,
Field,
field_validator,
model_validator,
)
# Constants for validation
MAX_QUERY_LENGTH = 10000
MIN_QUERY_LENGTH = 1
MAX_CONTEXT_LENGTH = 50000
MAX_ITERATIONS = 10000
MIN_ITERATIONS = 1
MAX_EXPLORATION_WEIGHT = 10.0
MIN_EXPLORATION_WEIGHT = 0.0
MAX_BATCH_SIZE = 100
class QueryInput(BaseModel):
"""
Validated query input for the multi-agent framework.
Performs sanitization and security checks on user queries.
"""
model_config = ConfigDict(
strict=True,
validate_assignment=True,
extra="forbid",
)
query: str = Field(
..., min_length=MIN_QUERY_LENGTH, max_length=MAX_QUERY_LENGTH, description="User query to process"
)
use_rag: bool = Field(default=True, description="Enable RAG context retrieval")
use_mcts: bool = Field(default=False, description="Enable MCTS simulation for tactical planning")
thread_id: str | None = Field(
default=None,
max_length=100,
pattern=r"^[a-zA-Z0-9_-]+$",
description="Conversation thread ID for state persistence",
)
@field_validator("query")
@classmethod
def sanitize_query(cls, v: str) -> str:
"""
Sanitize query input for security.
Removes potentially dangerous patterns while preserving legitimate content.
"""
# Strip leading/trailing whitespace
v = v.strip()
# Check for empty query after stripping
if not v:
raise ValueError("Query cannot be empty or contain only whitespace")
# Remove null bytes
v = v.replace("\x00", "")
# Limit consecutive whitespace
v = re.sub(r"\s+", " ", v)
# Check for suspicious patterns (basic injection prevention)
suspicious_patterns = [
r"<script[^>]*>", # Script tags
r"javascript:", # JavaScript URLs
r"on\w+\s*=", # Event handlers
r"\{\{.*\}\}", # Template injection
r"\$\{.*\}", # Template literals
]
for pattern in suspicious_patterns:
if re.search(pattern, v, re.IGNORECASE):
raise ValueError(f"Query contains potentially unsafe content matching pattern: {pattern}")
return v
@field_validator("thread_id")
@classmethod
def validate_thread_id(cls, v: str | None) -> str | None:
"""Validate thread ID format for safe storage keys."""
if v is not None: # noqa: SIM102
# Additional safety check beyond pattern
if ".." in v or "/" in v or "\\" in v:
raise ValueError("Thread ID contains invalid path characters")
return v
class MCTSConfig(BaseModel):
"""
Validated MCTS configuration parameters.
Enforces bounds on exploration weight and iteration counts.
"""
model_config = ConfigDict(
strict=True,
extra="forbid",
)
iterations: int = Field(
default=100, ge=MIN_ITERATIONS, le=MAX_ITERATIONS, description="Number of MCTS simulation iterations"
)
exploration_weight: float = Field(
default=1.414,
ge=MIN_EXPLORATION_WEIGHT,
le=MAX_EXPLORATION_WEIGHT,
description="UCB1 exploration constant (c parameter)",
)
max_depth: int = Field(default=10, ge=1, le=50, description="Maximum tree depth for MCTS expansion")
simulation_timeout_seconds: float = Field(
default=30.0, ge=1.0, le=300.0, description="Timeout for MCTS simulation phase"
)
@field_validator("exploration_weight")
@classmethod
def validate_exploration_weight(cls, v: float) -> float:
"""Validate exploration weight is within reasonable bounds."""
if not (MIN_EXPLORATION_WEIGHT <= v <= MAX_EXPLORATION_WEIGHT):
raise ValueError(
f"Exploration weight must be between {MIN_EXPLORATION_WEIGHT} and {MAX_EXPLORATION_WEIGHT}"
)
# Warn for unusual values
if v < 0.5 or v > 3.0:
import warnings
warnings.warn(
f"Exploration weight {v} is outside typical range (0.5-3.0). "
"This may lead to suboptimal search behavior.",
UserWarning,
stacklevel=2,
)
return v
class AgentConfig(BaseModel):
"""
Validated configuration for HRM/TRM agents.
"""
model_config = ConfigDict(
extra="forbid",
)
max_iterations: int = Field(default=3, ge=1, le=20, description="Maximum iterations for agent refinement")
consensus_threshold: float = Field(
default=0.75, ge=0.0, le=1.0, description="Consensus threshold for agent agreement"
)
temperature: float = Field(default=0.7, ge=0.0, le=2.0, description="LLM temperature for response generation")
max_tokens: int = Field(default=2048, ge=1, le=128000, description="Maximum tokens in LLM response")
@field_validator("temperature")
@classmethod
def validate_temperature(cls, v: float) -> float:
"""Validate temperature is within LLM bounds."""
if v < 0.0 or v > 2.0:
raise ValueError("Temperature must be between 0.0 and 2.0")
return v
class RAGConfig(BaseModel):
"""
Validated RAG (Retrieval Augmented Generation) configuration.
"""
model_config = ConfigDict(
extra="forbid",
)
top_k: int = Field(default=5, ge=1, le=50, description="Number of documents to retrieve")
similarity_threshold: float = Field(
default=0.5, ge=0.0, le=1.0, description="Minimum similarity score for retrieved documents"
)
chunk_size: int = Field(default=1000, ge=100, le=10000, description="Document chunk size for embedding")
chunk_overlap: int = Field(default=200, ge=0, le=2000, description="Overlap between document chunks")
@model_validator(mode="after")
def validate_chunk_overlap(self) -> "RAGConfig":
"""Ensure chunk overlap is less than chunk size."""
if self.chunk_overlap >= self.chunk_size:
raise ValueError("Chunk overlap must be less than chunk size")
return self
class MCPToolInput(BaseModel):
"""
Base validation model for MCP (Model Context Protocol) tool inputs.
Provides strict validation for external tool invocations.
"""
model_config = ConfigDict(
strict=True,
extra="forbid",
)
tool_name: str = Field(
...,
min_length=1,
max_length=100,
pattern=r"^[a-zA-Z][a-zA-Z0-9_-]*$",
description="Name of the MCP tool to invoke",
)
parameters: dict[str, Any] = Field(default_factory=dict, description="Tool parameters as key-value pairs")
timeout_seconds: float = Field(default=30.0, ge=1.0, le=300.0, description="Timeout for tool execution")
@field_validator("tool_name")
@classmethod
def validate_tool_name(cls, v: str) -> str:
"""Validate tool name is safe and follows naming conventions."""
# Prevent path traversal in tool names
if ".." in v or "/" in v or "\\" in v:
raise ValueError("Tool name contains invalid characters")
# Prevent overly long names
if len(v) > 100:
raise ValueError("Tool name exceeds maximum length of 100 characters")
return v
@field_validator("parameters")
@classmethod
def validate_parameters(cls, v: dict[str, Any]) -> dict[str, Any]:
"""Validate tool parameters for security."""
# Check for reasonable size
if len(str(v)) > 100000:
raise ValueError("Tool parameters exceed maximum size")
# Check parameter count
if len(v) > 50:
raise ValueError("Too many parameters (maximum 50)")
# Validate parameter keys
for key in v:
if not isinstance(key, str):
raise ValueError("Parameter keys must be strings")
if len(key) > 100:
raise ValueError(f"Parameter key '{key[:20]}...' exceeds maximum length")
if not re.match(r"^[a-zA-Z_][a-zA-Z0-9_]*$", key):
raise ValueError(f"Invalid parameter key format: {key}")
return v
class FileReadInput(MCPToolInput):
"""
Validated input for file reading operations.
Implements path traversal protection.
"""
tool_name: str = Field(default="read_file", frozen=True)
file_path: str = Field(..., min_length=1, max_length=1000, description="Path to file to read")
@field_validator("file_path")
@classmethod
def validate_file_path(cls, v: str) -> str:
"""Validate file path for security concerns."""
# Normalize path
v = v.strip()
# Check for path traversal attempts
if ".." in v:
raise ValueError("Path traversal detected: '..' not allowed in file path")
# Check for absolute paths (may be allowed in some contexts)
if v.startswith("/"):
import warnings
warnings.warn(
"Absolute file path provided. Ensure this is within allowed directories.", UserWarning, stacklevel=2
)
# Check for suspicious patterns
suspicious = [
"/etc/",
"/root/",
"~/.ssh/",
"/var/",
"\\windows\\",
"\\system32\\",
]
for pattern in suspicious:
if pattern.lower() in v.lower():
raise ValueError(f"File path contains restricted directory: {pattern}")
return v
class WebFetchInput(MCPToolInput):
"""
Validated input for web fetch operations.
Implements URL validation and security checks.
"""
tool_name: str = Field(default="web_fetch", frozen=True)
url: str = Field(..., min_length=1, max_length=2000, description="URL to fetch")
@field_validator("url")
@classmethod
def validate_url(cls, v: str) -> str:
"""Validate URL for security."""
v = v.strip()
# Must start with https:// for security (http:// only for local)
if not v.startswith(("https://", "http://localhost", "http://127.0.0.1")):
raise ValueError("URL must use HTTPS protocol (except for localhost)")
# Check for suspicious patterns
if any(char in v for char in ["<", ">", "'", '"', ";"]):
raise ValueError("URL contains invalid characters")
# Validate basic URL structure
url_pattern = r"^https?://[^\s/$.?#].[^\s]*$"
if not re.match(url_pattern, v, re.IGNORECASE):
raise ValueError("Invalid URL format")
return v
class BatchQueryInput(BaseModel):
"""
Validated batch query input for processing multiple queries.
"""
model_config = ConfigDict(
strict=True,
extra="forbid",
)
queries: list[QueryInput] = Field(
..., min_length=1, max_length=MAX_BATCH_SIZE, description="List of queries to process in batch"
)
parallel: bool = Field(default=False, description="Process queries in parallel (if system supports)")
@field_validator("queries")
@classmethod
def validate_batch_size(cls, v: list[QueryInput]) -> list[QueryInput]:
"""Validate batch doesn't exceed limits."""
if len(v) > MAX_BATCH_SIZE:
raise ValueError(f"Batch size exceeds maximum of {MAX_BATCH_SIZE}")
if len(v) == 0:
raise ValueError("Batch must contain at least one query")
return v
class APIRequestMetadata(BaseModel):
"""
Metadata for API request tracking and audit logging.
Used for security monitoring and rate limiting.
"""
model_config = ConfigDict(
extra="forbid",
)
request_id: str = Field(
..., min_length=1, max_length=100, pattern=r"^[a-zA-Z0-9_-]+$", description="Unique request identifier"
)
timestamp: datetime = Field(default_factory=datetime.utcnow, description="Request timestamp (UTC)")
client_id: str | None = Field(
default=None, max_length=100, pattern=r"^[a-zA-Z0-9_-]+$", description="Client identifier for rate limiting"
)
source_ip: str | None = Field(default=None, description="Source IP address (for audit logging)")
@field_validator("source_ip")
@classmethod
def validate_ip_address(cls, v: str | None) -> str | None:
"""Validate IP address format."""
if v is not None:
# Basic IPv4/IPv6 validation
import ipaddress
try:
ipaddress.ip_address(v)
except ValueError:
raise ValueError(f"Invalid IP address format: {v}")
return v
# Convenience functions for common validation patterns
def validate_query(query: str, **kwargs) -> QueryInput:
"""
Validate a query string and return a validated QueryInput model.
Args:
query: Raw query string
**kwargs: Additional query parameters
Returns:
QueryInput: Validated query model
Raises:
ValidationError: If validation fails
"""
return QueryInput(query=query, **kwargs)
def validate_mcts_config(**kwargs) -> MCTSConfig:
"""
Validate MCTS configuration parameters.
Args:
**kwargs: MCTS configuration parameters
Returns:
MCTSConfig: Validated configuration
Raises:
ValidationError: If validation fails
"""
return MCTSConfig(**kwargs)
def validate_tool_input(tool_name: str, parameters: dict[str, Any], **kwargs) -> MCPToolInput:
"""
Validate MCP tool input parameters.
Args:
tool_name: Name of the tool
parameters: Tool parameters
**kwargs: Additional options
Returns:
MCPToolInput: Validated tool input
Raises:
ValidationError: If validation fails
"""
return MCPToolInput(tool_name=tool_name, parameters=parameters, **kwargs)
# Type exports
__all__ = [
"QueryInput",
"MCTSConfig",
"AgentConfig",
"RAGConfig",
"MCPToolInput",
"FileReadInput",
"WebFetchInput",
"BatchQueryInput",
"APIRequestMetadata",
"validate_query",
"validate_mcts_config",
"validate_tool_input",
]
|