Spaces:
Sleeping
Sleeping
File size: 12,018 Bytes
40ee6b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
"""
Text Preprocessing Module for Training Data.
Provides utilities for:
- Text cleaning and normalization
- Tokenization with various backends
- Feature extraction for meta-controller training
"""
import logging
import re
from dataclasses import dataclass
from typing import Any
logger = logging.getLogger(__name__)
@dataclass
class PreprocessedText:
"""Preprocessed text with metadata."""
original: str
cleaned: str
tokens: list[str]
token_ids: list[int] | None = None
features: dict[str, Any] | None = None
class TextPreprocessor:
"""
Text preprocessing pipeline for multi-agent training data.
Handles:
- HTML/XML tag removal
- Special character normalization
- Whitespace cleanup
- Domain-specific preprocessing (cyber, military, etc.)
"""
# Patterns for cleaning
HTML_TAG_PATTERN = re.compile(r"<[^>]+>")
URL_PATTERN = re.compile(r"https?://\S+|www\.\S+")
MULTIPLE_SPACES = re.compile(r"\s+")
SPECIAL_CHARS = re.compile(r"[^\w\s\-.,!?;:()[\]{}\"'/]")
# Domain-specific patterns
IP_ADDRESS_PATTERN = re.compile(r"\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b")
CVE_PATTERN = re.compile(r"CVE-\d{4}-\d{4,}")
MITRE_TECHNIQUE_PATTERN = re.compile(r"T\d{4}(?:\.\d{3})?")
def __init__(
self,
remove_html: bool = True,
normalize_urls: bool = True,
lowercase: bool = False,
preserve_domain_patterns: bool = True,
):
"""
Initialize preprocessor.
Args:
remove_html: Remove HTML/XML tags
normalize_urls: Replace URLs with placeholder
lowercase: Convert to lowercase
preserve_domain_patterns: Keep domain-specific patterns (IPs, CVEs, etc.)
"""
self.remove_html = remove_html
self.normalize_urls = normalize_urls
self.lowercase = lowercase
self.preserve_domain_patterns = preserve_domain_patterns
def clean(self, text: str) -> str:
"""
Clean and normalize text.
Args:
text: Raw input text
Returns:
Cleaned text
"""
if not text:
return ""
result = text
# Remove HTML tags
if self.remove_html:
result = self.HTML_TAG_PATTERN.sub(" ", result)
# Preserve or normalize URLs
if self.normalize_urls:
if self.preserve_domain_patterns:
result = self.URL_PATTERN.sub("[URL]", result)
else:
result = self.URL_PATTERN.sub("", result)
# Normalize whitespace
result = self.MULTIPLE_SPACES.sub(" ", result)
# Lowercase if requested
if self.lowercase:
result = result.lower()
# Strip leading/trailing whitespace
result = result.strip()
return result
def extract_domain_features(self, text: str) -> dict[str, Any]:
"""
Extract domain-specific features from text.
Args:
text: Input text
Returns:
Dictionary of extracted features
"""
features = {
"has_ip_addresses": bool(self.IP_ADDRESS_PATTERN.search(text)),
"ip_count": len(self.IP_ADDRESS_PATTERN.findall(text)),
"has_cve": bool(self.CVE_PATTERN.search(text)),
"cve_ids": self.CVE_PATTERN.findall(text),
"has_mitre_techniques": bool(self.MITRE_TECHNIQUE_PATTERN.search(text)),
"mitre_techniques": self.MITRE_TECHNIQUE_PATTERN.findall(text),
"text_length": len(text),
"word_count": len(text.split()),
"sentence_count": len(re.findall(r"[.!?]+", text)),
}
# Detect domain indicators
domain_keywords = {
"cybersecurity": ["attack", "vulnerability", "exploit", "malware", "threat"],
"military": ["tactical", "reconnaissance", "deployment", "terrain", "objective"],
"data_analysis": ["dataset", "analysis", "correlation", "statistics", "visualization"],
}
for domain, keywords in domain_keywords.items():
features[f"is_{domain}"] = any(kw in text.lower() for kw in keywords)
return features
def preprocess(self, text: str) -> PreprocessedText:
"""
Full preprocessing pipeline.
Args:
text: Raw input text
Returns:
PreprocessedText object with all preprocessing results
"""
cleaned = self.clean(text)
tokens = cleaned.split() # Simple whitespace tokenization
features = self.extract_domain_features(text)
return PreprocessedText(
original=text,
cleaned=cleaned,
tokens=tokens,
features=features,
)
def batch_preprocess(self, texts: list[str]) -> list[PreprocessedText]:
"""
Preprocess multiple texts.
Args:
texts: List of raw texts
Returns:
List of PreprocessedText objects
"""
return [self.preprocess(text) for text in texts]
class TokenizerWrapper:
"""
Wrapper for various tokenization backends.
Supports:
- Simple whitespace tokenization
- HuggingFace tokenizers
- Custom vocabularies
"""
def __init__(
self,
backend: str = "simple",
model_name: str | None = None,
max_length: int = 512,
):
"""
Initialize tokenizer.
Args:
backend: Tokenizer backend ('simple', 'huggingface', 'custom')
model_name: Model name for HuggingFace tokenizer
max_length: Maximum sequence length
"""
self.backend = backend
self.model_name = model_name
self.max_length = max_length
self._tokenizer = None
if backend == "huggingface" and model_name:
self._load_huggingface_tokenizer()
def _load_huggingface_tokenizer(self):
"""Load HuggingFace tokenizer."""
try:
from transformers import AutoTokenizer
self._tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
model_max_length=self.max_length,
)
logger.info(f"Loaded HuggingFace tokenizer: {self.model_name}")
except ImportError:
logger.error("transformers library not installed. Run: pip install transformers")
raise
def tokenize(self, text: str) -> tuple[list[str], list[int] | None]:
"""
Tokenize text.
Args:
text: Input text
Returns:
Tuple of (tokens, token_ids)
"""
if self.backend == "simple":
tokens = text.split()[: self.max_length]
return tokens, None
elif self.backend == "huggingface" and self._tokenizer:
encoded = self._tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_tensors=None,
)
tokens = self._tokenizer.convert_ids_to_tokens(encoded["input_ids"])
token_ids = encoded["input_ids"]
return tokens, token_ids
else:
raise ValueError(f"Unsupported backend: {self.backend}")
def batch_tokenize(self, texts: list[str]) -> list[tuple[list[str], list[int] | None]]:
"""
Tokenize multiple texts.
Args:
texts: List of input texts
Returns:
List of (tokens, token_ids) tuples
"""
return [self.tokenize(text) for text in texts]
def encode_for_training(self, texts: list[str]) -> dict[str, Any]:
"""
Encode texts for model training.
Args:
texts: List of input texts
Returns:
Dictionary with encoded data ready for training
"""
if self.backend != "huggingface" or not self._tokenizer:
raise ValueError("encode_for_training requires HuggingFace backend")
encoded = self._tokenizer(
texts,
truncation=True,
padding=True,
max_length=self.max_length,
return_tensors="pt",
)
return encoded
class MetaControllerFeatureExtractor:
"""
Extract features for meta-controller training.
Converts text and agent state information into numerical features
suitable for RNN/BERT routing decisions.
"""
def __init__(self):
"""Initialize feature extractor."""
self.preprocessor = TextPreprocessor()
def extract_query_features(self, query: str) -> dict[str, float]:
"""
Extract numerical features from query text.
Args:
query: User query text
Returns:
Dictionary of numerical features
"""
domain_features = self.preprocessor.extract_domain_features(query)
features = {
"query_length": domain_features["text_length"] / 10000, # Normalize
"word_count": domain_features["word_count"] / 500,
"sentence_count": domain_features["sentence_count"] / 50,
"has_technical_terms": float(
domain_features["has_ip_addresses"]
or domain_features["has_cve"]
or domain_features["has_mitre_techniques"]
),
"is_cybersecurity": float(domain_features["is_cybersecurity"]),
"is_military": float(domain_features["is_military"]),
"is_data_analysis": float(domain_features["is_data_analysis"]),
"complexity_score": self._estimate_complexity(query),
}
return features
def _estimate_complexity(self, text: str) -> float:
"""
Estimate query complexity (0-1 scale).
Args:
text: Input text
Returns:
Complexity score
"""
# Simple heuristic based on length, technical terms, etc.
score = 0.0
# Length factor
word_count = len(text.split())
if word_count > 50:
score += 0.3
elif word_count > 20:
score += 0.1
# Technical term factor
technical_indicators = [
"analyze",
"compare",
"evaluate",
"synthesize",
"strategic",
"tactical",
"multi-step",
"consider",
]
for term in technical_indicators:
if term in text.lower():
score += 0.1
# Question complexity
if "?" in text:
if any(kw in text.lower() for kw in ["why", "how", "what if"]):
score += 0.2
else:
score += 0.1
return min(score, 1.0)
def extract_agent_state_features(
self,
hrm_confidence: float = 0.0,
trm_confidence: float = 0.0,
mcts_iterations: int = 0,
consensus_score: float = 0.0,
rag_retrieved: int = 0,
) -> list[float]:
"""
Extract features from current agent state.
Args:
hrm_confidence: HRM agent confidence
trm_confidence: TRM agent confidence
mcts_iterations: MCTS iterations completed
consensus_score: Inter-agent consensus
rag_retrieved: Number of RAG documents retrieved
Returns:
List of normalized features (10-dimensional)
"""
return [
hrm_confidence,
trm_confidence,
min(mcts_iterations / 1000, 1.0),
consensus_score,
min(rag_retrieved / 20, 1.0),
# Derived features
abs(hrm_confidence - trm_confidence), # Disagreement
(hrm_confidence + trm_confidence) / 2, # Average confidence
float(mcts_iterations > 0), # MCTS active
float(consensus_score > 0.7), # High consensus
float(rag_retrieved > 0), # RAG used
]
|