File size: 19,086 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"""
Dataset Loading Module for Open-Source Training Data.

Provides unified loading interfaces for:
- DABStep: Multi-step data analysis reasoning
- PRIMUS: Cybersecurity domain knowledge
- Custom tactical datasets

License Attribution:
- DABStep: CC-BY-4.0 (Creative Commons Attribution)
- PRIMUS: ODC-BY (Open Data Commons Attribution)
"""

import logging
from abc import ABC, abstractmethod
from collections.abc import Iterator
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any

logger = logging.getLogger(__name__)


@dataclass
class DatasetSample:
    """Standardized representation of a dataset sample."""

    id: str
    text: str
    metadata: dict[str, Any] = field(default_factory=dict)
    labels: list[str] | None = None
    difficulty: str | None = None
    domain: str | None = None
    reasoning_steps: list[str] | None = None


@dataclass
class DatasetStatistics:
    """Statistics about a loaded dataset."""

    total_samples: int
    domains: dict[str, int]
    avg_text_length: float
    difficulty_distribution: dict[str, int]
    total_tokens: int = 0


class DatasetLoader(ABC):
    """Abstract base class for dataset loaders."""

    def __init__(self, cache_dir: str | None = None):
        """
        Initialize dataset loader.

        Args:
            cache_dir: Directory to cache downloaded datasets
        """
        self.cache_dir = cache_dir or str(Path.home() / ".cache" / "mcts_datasets")
        self._dataset = None
        self._statistics = None

    @abstractmethod
    def load(self, split: str = "train") -> list[DatasetSample]:
        """Load dataset split."""
        pass

    @abstractmethod
    def get_statistics(self) -> DatasetStatistics:
        """Get dataset statistics."""
        pass

    @abstractmethod
    def iterate_samples(self, batch_size: int = 32) -> Iterator[list[DatasetSample]]:
        """Iterate over samples in batches."""
        pass


class DABStepLoader(DatasetLoader):
    """
    Loader for DABStep Multi-Step Reasoning Dataset.

    DABStep contains 450+ data analysis tasks requiring sequential,
    iterative problem-solving. Perfect for training HRM/TRM agents.

    License: CC-BY-4.0 (Attribution required)
    Source: huggingface.co/datasets/adyen/DABstep
    """

    DATASET_NAME = "adyen/DABstep"
    DIFFICULTIES = ["easy", "medium", "hard"]

    def __init__(self, cache_dir: str | None = None):
        """Initialize DABStep loader."""
        super().__init__(cache_dir)
        self._loaded_samples: list[DatasetSample] = []

    def load(self, split: str = "train", difficulty: str | None = None) -> list[DatasetSample]:
        """
        Load DABStep dataset.

        Args:
            split: Dataset split ('train', 'validation', 'test')
            difficulty: Filter by difficulty ('easy', 'medium', 'hard')

        Returns:
            List of DatasetSample objects
        """
        try:
            from datasets import load_dataset

            logger.info(f"Loading DABStep dataset (split={split})")

            dataset = load_dataset(
                self.DATASET_NAME,
                cache_dir=self.cache_dir,
            )

            if split not in dataset:
                available_splits = list(dataset.keys())
                logger.warning(f"Split '{split}' not found. Available: {available_splits}")
                split = available_splits[0] if available_splits else "train"

            samples = []
            for idx, item in enumerate(dataset[split]):
                sample = DatasetSample(
                    id=f"dabstep_{split}_{idx}",
                    text=str(item.get("question", item.get("text", ""))),
                    metadata={
                        "source": "DABStep",
                        "license": "CC-BY-4.0",
                        "split": split,
                        "original_data": item,
                    },
                    difficulty=item.get("difficulty", "medium"),
                    domain="data_analysis",
                    reasoning_steps=item.get("steps", []),
                )

                if difficulty and sample.difficulty != difficulty:
                    continue

                samples.append(sample)

            self._loaded_samples = samples
            logger.info(f"Loaded {len(samples)} DABStep samples")
            return samples

        except ImportError:
            logger.error("datasets library not installed. Run: pip install datasets")
            raise
        except Exception as e:
            logger.error(f"Failed to load DABStep: {e}")
            raise

    def get_statistics(self) -> DatasetStatistics:
        """Get statistics about loaded DABStep data."""
        if not self._loaded_samples:
            raise ValueError("No samples loaded. Call load() first.")

        difficulty_dist = {}
        total_length = 0

        for sample in self._loaded_samples:
            diff = sample.difficulty or "unknown"
            difficulty_dist[diff] = difficulty_dist.get(diff, 0) + 1
            total_length += len(sample.text)

        return DatasetStatistics(
            total_samples=len(self._loaded_samples),
            domains={"data_analysis": len(self._loaded_samples)},
            avg_text_length=total_length / len(self._loaded_samples),
            difficulty_distribution=difficulty_dist,
        )

    def iterate_samples(self, batch_size: int = 32) -> Iterator[list[DatasetSample]]:
        """Iterate over samples in batches."""
        if not self._loaded_samples:
            raise ValueError("No samples loaded. Call load() first.")

        for i in range(0, len(self._loaded_samples), batch_size):
            yield self._loaded_samples[i : i + batch_size]

    def get_reasoning_tasks(self) -> list[DatasetSample]:
        """Get only samples with explicit reasoning steps."""
        return [s for s in self._loaded_samples if s.reasoning_steps]


class PRIMUSLoader(DatasetLoader):
    """
    Loader for PRIMUS Cybersecurity Dataset Suite.

    PRIMUS contains:
    - Seed: 674,848 cybersecurity documents (190M tokens)
    - Instruct: 835 instruction-tuning samples
    - Reasoning: Self-reflection data for reasoning

    License: ODC-BY (Open Data Commons Attribution)
    Source: huggingface.co/datasets/trendmicro-ailab/Primus-Seed
    """

    SEED_DATASET = "trendmicro-ailab/Primus-Seed"
    INSTRUCT_DATASET = "trendmicro-ailab/Primus-Instruct"

    DOMAINS = [
        "mitre_attack",
        "wikipedia",
        "company_sites",
        "threat_intelligence",
        "vulnerability_db",
    ]

    def __init__(self, cache_dir: str | None = None):
        """Initialize PRIMUS loader."""
        super().__init__(cache_dir)
        self._seed_samples: list[DatasetSample] = []
        self._instruct_samples: list[DatasetSample] = []

    def load(
        self,
        split: str = "train",
        dataset_type: str = "seed",
        domains: list[str] | None = None,
        max_samples: int | None = None,
        streaming: bool = True,
    ) -> list[DatasetSample]:
        """
        Load PRIMUS dataset.

        Args:
            split: Dataset split ('train', 'validation', 'test')
            dataset_type: 'seed' for knowledge base, 'instruct' for fine-tuning
            domains: Filter by specific domains
            max_samples: Limit number of samples (useful for large datasets)
            streaming: Use streaming mode for large datasets (default True)

        Returns:
            List of DatasetSample objects
        """
        try:
            from datasets import load_dataset

            dataset_name = self.SEED_DATASET if dataset_type == "seed" else self.INSTRUCT_DATASET

            logger.info(f"Loading PRIMUS {dataset_type} dataset")

            # Use streaming for large seed dataset to avoid download issues
            use_streaming = streaming and dataset_type == "seed" and max_samples is not None

            if use_streaming:
                logger.info(f"Using streaming mode (max_samples={max_samples})")
                dataset = load_dataset(
                    dataset_name,
                    "default",
                    streaming=True,
                    cache_dir=self.cache_dir,
                )
                # For streaming, iterate the first available split
                data_iter = iter(dataset["train"]) if "train" in dataset else iter(dataset[list(dataset.keys())[0]])
            else:
                dataset = load_dataset(
                    dataset_name,
                    cache_dir=self.cache_dir,
                )

                if split not in dataset:
                    available_splits = list(dataset.keys())
                    logger.warning(f"Split '{split}' not found. Using: {available_splits[0]}")
                    split = available_splits[0]

                data_iter = iter(dataset[split])

            samples = []
            count = 0

            for idx, item in enumerate(data_iter):
                if max_samples and count >= max_samples:
                    break

                domain = item.get("domain", item.get("source", "unknown"))

                if domains and domain not in domains:
                    continue

                if dataset_type == "instruct":
                    text = f"Instruction: {item.get('instruction', '')}\nResponse: {item.get('response', '')}"
                else:
                    text = str(item.get("text", item.get("content", "")))

                sample = DatasetSample(
                    id=f"primus_{dataset_type}_{split}_{idx}",
                    text=text,
                    metadata={
                        "source": f"PRIMUS-{dataset_type.capitalize()}",
                        "license": "ODC-BY",
                        "split": split,
                        "original_domain": domain,
                    },
                    domain=domain,
                    labels=item.get("labels", item.get("tags", [])),
                )

                samples.append(sample)
                count += 1

            if dataset_type == "seed":
                self._seed_samples = samples
            else:
                self._instruct_samples = samples

            logger.info(f"Loaded {len(samples)} PRIMUS {dataset_type} samples")
            return samples

        except ImportError:
            logger.error("datasets library not installed. Run: pip install datasets")
            raise
        except Exception as e:
            if "gated dataset" in str(e):
                logger.error(
                    f"PRIMUS is a gated dataset. Please authenticate with HuggingFace:\n"
                    f"1. Create account at https://huggingface.co/\n"
                    f"2. Accept dataset terms at https://huggingface.co/datasets/{dataset_name}\n"
                    f"3. Create token at https://huggingface.co/settings/tokens\n"
                    f"4. Run: huggingface-cli login"
                )
            else:
                logger.error(f"Failed to load PRIMUS: {e}")
            raise

    def load_seed(self, max_samples: int | None = None) -> list[DatasetSample]:
        """Load PRIMUS-Seed knowledge base."""
        return self.load(dataset_type="seed", max_samples=max_samples)

    def load_instruct(self) -> list[DatasetSample]:
        """Load PRIMUS-Instruct fine-tuning data."""
        return self.load(dataset_type="instruct", streaming=False)

    def get_statistics(self) -> DatasetStatistics:
        """Get statistics about loaded PRIMUS data."""
        all_samples = self._seed_samples + self._instruct_samples

        if not all_samples:
            raise ValueError("No samples loaded. Call load() first.")

        domain_dist = {}
        total_length = 0

        for sample in all_samples:
            domain = sample.domain or "unknown"
            domain_dist[domain] = domain_dist.get(domain, 0) + 1
            total_length += len(sample.text)

        return DatasetStatistics(
            total_samples=len(all_samples),
            domains=domain_dist,
            avg_text_length=total_length / len(all_samples),
            difficulty_distribution={"cybersecurity": len(all_samples)},
        )

    def iterate_samples(self, batch_size: int = 32) -> Iterator[list[DatasetSample]]:
        """Iterate over all loaded samples in batches."""
        all_samples = self._seed_samples + self._instruct_samples

        if not all_samples:
            raise ValueError("No samples loaded. Call load() first.")

        for i in range(0, len(all_samples), batch_size):
            yield all_samples[i : i + batch_size]

    def get_mitre_attack_samples(self) -> list[DatasetSample]:
        """Get samples specifically from MITRE ATT&CK."""
        return [s for s in self._seed_samples if "mitre" in (s.domain or "").lower()]

    def get_threat_intelligence_samples(self) -> list[DatasetSample]:
        """Get threat intelligence related samples."""
        return [
            s
            for s in self._seed_samples
            if any(kw in (s.domain or "").lower() for kw in ["threat", "cti", "intelligence"])
        ]


class CombinedDatasetLoader:
    """
    Unified loader for combining multiple datasets.

    Provides a single interface for loading and managing:
    - DABStep (multi-step reasoning)
    - PRIMUS (cybersecurity knowledge)
    - Custom tactical datasets
    """

    def __init__(self, cache_dir: str | None = None):
        """Initialize combined loader."""
        self.cache_dir = cache_dir
        self.dabstep_loader = DABStepLoader(cache_dir)
        self.primus_loader = PRIMUSLoader(cache_dir)
        self._all_samples: list[DatasetSample] = []

    def load_all(
        self,
        dabstep_split: str = "train",
        primus_max_samples: int | None = 10000,
        include_instruct: bool = True,
    ) -> list[DatasetSample]:
        """
        Load all datasets.

        Args:
            dabstep_split: Split for DABStep
            primus_max_samples: Max samples from PRIMUS-Seed (None for all)
            include_instruct: Whether to include PRIMUS-Instruct

        Returns:
            Combined list of all samples
        """
        logger.info("Loading combined datasets")

        # Load DABStep
        dabstep_samples = self.dabstep_loader.load(split=dabstep_split)
        logger.info(f"DABStep: {len(dabstep_samples)} samples")

        # Load PRIMUS-Seed
        primus_seed = self.primus_loader.load_seed(max_samples=primus_max_samples)
        logger.info(f"PRIMUS-Seed: {len(primus_seed)} samples")

        # Load PRIMUS-Instruct
        primus_instruct = []
        if include_instruct:
            primus_instruct = self.primus_loader.load_instruct()
            logger.info(f"PRIMUS-Instruct: {len(primus_instruct)} samples")

        self._all_samples = dabstep_samples + primus_seed + primus_instruct
        logger.info(f"Total combined samples: {len(self._all_samples)}")

        return self._all_samples

    def get_domain_distribution(self) -> dict[str, int]:
        """Get distribution of samples across domains."""
        dist = {}
        for sample in self._all_samples:
            domain = sample.domain or "unknown"
            dist[domain] = dist.get(domain, 0) + 1
        return dist

    def filter_by_domain(self, domain: str) -> list[DatasetSample]:
        """Filter samples by domain."""
        return [s for s in self._all_samples if s.domain == domain]

    def get_multi_step_reasoning_samples(self) -> list[DatasetSample]:
        """Get samples suitable for multi-step reasoning training."""
        return [
            s
            for s in self._all_samples
            if s.reasoning_steps or s.domain == "data_analysis" or "instruct" in s.metadata.get("source", "").lower()
        ]

    def export_for_training(self, output_path: str, format: str = "jsonl") -> str:
        """
        Export dataset for training.

        Args:
            output_path: Path to save exported data
            format: Export format ('jsonl', 'csv', 'parquet')

        Returns:
            Path to exported file
        """
        import json

        output_file = Path(output_path)
        output_file.parent.mkdir(parents=True, exist_ok=True)

        if format == "jsonl":
            with open(output_file, "w", encoding="utf-8") as f:
                for sample in self._all_samples:
                    record = {
                        "id": sample.id,
                        "text": sample.text,
                        "domain": sample.domain,
                        "difficulty": sample.difficulty,
                        "labels": sample.labels,
                        "metadata": sample.metadata,
                    }
                    f.write(json.dumps(record) + "\n")
        else:
            raise NotImplementedError(f"Format {format} not yet supported")

        logger.info(f"Exported {len(self._all_samples)} samples to {output_file}")
        return str(output_file)


def load_dataset(
    dataset_name: str,
    split: str = "train",
    cache_dir: str | None = None,
    **kwargs,
) -> Any:
    """
    Unified interface for loading datasets from HuggingFace.

    This function provides compatibility with the standard HuggingFace datasets API.
    It wraps the underlying load_dataset function from the datasets library.

    Args:
        dataset_name: HuggingFace dataset identifier (e.g., "adyen/DABstep")
        split: Dataset split to load ("train", "validation", "test")
        cache_dir: Optional directory for caching downloaded datasets
        **kwargs: Additional arguments passed to datasets.load_dataset

    Returns:
        HuggingFace Dataset object or dict of Dataset objects

    Raises:
        ImportError: If datasets library is not installed
        Exception: If dataset loading fails

    Examples:
        >>> # Load DABStep dataset
        >>> dataset = load_dataset("adyen/DABstep")
        >>> samples = dataset["train"]

        >>> # Load PRIMUS-Seed with custom cache
        >>> dataset = load_dataset("trendmicro-ailab/Primus-Seed", cache_dir="/tmp/cache")

    License Attribution:
        - DABStep: CC-BY-4.0 (Creative Commons Attribution 4.0)
        - PRIMUS: ODC-BY (Open Data Commons Attribution)
    """
    try:
        from datasets import load_dataset as hf_load_dataset

        logger.info(f"Loading dataset: {dataset_name} (split={split})")

        load_kwargs = {
            **kwargs,
        }

        if cache_dir:
            load_kwargs["cache_dir"] = cache_dir

        dataset = hf_load_dataset(dataset_name, **load_kwargs)

        logger.info(f"Successfully loaded dataset: {dataset_name}")
        return dataset

    except ImportError:
        logger.error("datasets library not installed. Run: pip install datasets")
        raise ImportError("The datasets library is required but not installed. Install it with: pip install datasets")
    except Exception as e:
        logger.error(f"Failed to load dataset {dataset_name}: {e}")
        raise