File size: 7,360 Bytes
40ee6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Mock and lightweight LLM clients for demo purposes.
"""

import asyncio
import random
from typing import Any


class MockLLMClient:
    """Mock LLM client that generates plausible demo responses."""

    def __init__(self):
        self.response_templates = {
            "architecture": [
                "Consider scalability requirements and team expertise",
                "Evaluate coupling, deployment complexity, and operational overhead",
                "Balance between development speed and long-term maintainability",
            ],
            "optimization": [
                "Profile first to identify actual bottlenecks",
                "Consider memory-mapped files and streaming processing",
                "Implement parallel processing with appropriate chunk sizes",
            ],
            "database": [
                "Consider data consistency requirements and query patterns",
                "Evaluate write-heavy vs read-heavy workload characteristics",
                "Plan for horizontal scaling and data distribution strategies",
            ],
            "distributed": [
                "Implement proper failure detection and recovery mechanisms",
                "Use circuit breakers and bulkhead patterns for resilience",
                "Consider eventual consistency vs strong consistency trade-offs",
            ],
            "default": [
                "Break down the problem into smaller components",
                "Consider trade-offs between different approaches",
                "Evaluate based on specific use case requirements",
            ],
        }

    async def generate(self, prompt: str, context: str = "") -> dict[str, Any]:
        """Generate a mock response based on the prompt and optional context."""
        # Simulate processing time
        await asyncio.sleep(random.uniform(0.1, 0.3))

        # Determine response category
        prompt_lower = prompt.lower()
        if "architecture" in prompt_lower or "microservice" in prompt_lower or "monolith" in prompt_lower:
            category = "architecture"
        elif "optim" in prompt_lower or "performance" in prompt_lower or "process" in prompt_lower:
            category = "optimization"
        elif "database" in prompt_lower or "sql" in prompt_lower or "nosql" in prompt_lower:
            category = "database"
        elif "distribut" in prompt_lower or "fault" in prompt_lower or "rate limit" in prompt_lower:
            category = "distributed"
        else:
            category = "default"

        templates = self.response_templates[category]

        # Generate response with some randomness
        response = random.choice(templates)
        confidence = random.uniform(0.6, 0.95)

        # Add more detail based on prompt length (simulating "understanding")
        if len(prompt) > 100:
            confidence = min(0.95, confidence + 0.1)
            response += f". Additionally, {random.choice(self.response_templates['default'])}"

        # Lightly incorporate context to simulate conditioning
        context_snippet = context.strip()
        if context_snippet:
            confidence = min(0.99, confidence + 0.05)
            response += f" (context signal: {context_snippet[:60]}{'...' if len(context_snippet) > 60 else ''})"

        return {
            "response": response,
            "confidence": round(confidence, 3),
            "tokens_used": len(prompt.split()) * 2 + len(response.split()),
        }

    async def generate_reasoning_steps(self, query: str, num_steps: int = 3) -> list[str]:
        """Generate mock reasoning steps."""
        await asyncio.sleep(random.uniform(0.05, 0.15))

        base_steps = [
            f"Analyzing query: '{query[:50]}...'",
            "Identifying key requirements and constraints",
            "Evaluating potential approaches",
            "Considering trade-offs and implications",
            "Synthesizing recommendations based on analysis",
            "Validating conclusions against requirements",
        ]

        return random.sample(base_steps, min(num_steps, len(base_steps)))


class HuggingFaceClient:
    """Lightweight Hugging Face Inference API client."""

    def __init__(self, model_id: str = "mistralai/Mistral-7B-Instruct-v0.2"):
        """Initialize with a Hugging Face model.

        Args:
            model_id: The model ID on Hugging Face Hub
        """
        self.model_id = model_id
        self._client = None

    def _get_client(self):
        """Lazy load the HF client."""
        if self._client is None:
            try:
                from huggingface_hub import InferenceClient

                self._client = InferenceClient(model=self.model_id)
            except ImportError:
                raise ImportError("huggingface_hub not installed. Install with: pip install huggingface_hub")
        return self._client

    async def generate(self, prompt: str, context: str = "") -> dict[str, Any]:
        """Generate response using Hugging Face Inference API."""
        try:
            client = self._get_client()

            # Format prompt
            if context:
                full_prompt = f"Context: {context}\n\nQuestion: {prompt}\n\nAnswer:"
            else:
                full_prompt = f"Question: {prompt}\n\nProvide a concise, technical answer:\n\nAnswer:"

            # Call HF Inference API (sync call wrapped in async)
            response_text = await asyncio.to_thread(
                client.text_generation, full_prompt, max_new_tokens=150, temperature=0.7, do_sample=True
            )

            # Estimate confidence based on response characteristics
            confidence = min(0.95, 0.6 + len(response_text) / 500)

            return {
                "response": response_text.strip(),
                "confidence": round(confidence, 3),
                "tokens_used": len(full_prompt.split()) + len(response_text.split()),
            }

        except Exception as e:
            # Fallback to mock on error
            print(f"HF Inference error: {e}. Falling back to mock.")
            mock = MockLLMClient()
            return await mock.generate(prompt, context)

    async def generate_reasoning_steps(self, query: str, num_steps: int = 3) -> list[str]:
        """Generate reasoning steps using HF model."""
        try:
            client = self._get_client()

            prompt = f"""Break down this question into {num_steps} reasoning steps:
Question: {query}

Reasoning steps (one per line):
1."""

            response = await asyncio.to_thread(client.text_generation, prompt, max_new_tokens=200, temperature=0.5)

            # Parse steps from response
            lines = response.strip().split("\n")
            steps = []
            for line in lines:
                line = line.strip()
                if line and not line.startswith("#"):
                    # Remove numbering
                    if line[0].isdigit() and "." in line[:3]:
                        line = line.split(".", 1)[1].strip()
                    steps.append(line)

            return steps[:num_steps] if steps else ["Analysis in progress"]

        except Exception as e:
            print(f"HF reasoning error: {e}. Falling back to mock.")
            mock = MockLLMClient()
            return await mock.generate_reasoning_steps(query, num_steps)