Spaces:
Sleeping
Sleeping
Implement Gemini 2.5 Flash API integration for medical chatbot
Browse files- Added Google Gemini 2.5 Flash API integration
- Implemented secure API key management via environment variables
- Added sidebar option for API key configuration
- Replaced placeholder response logic with live API calls
- Configured temperature and max tokens parameters for API requests
- Added comprehensive error handling with fallback responses
- Updated model selection to include Gemini options
- Improved user interface with loading spinner and enhanced descriptions
main.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
|
|
|
| 3 |
from typing import Optional
|
| 4 |
|
| 5 |
# Set page configuration
|
|
@@ -18,17 +19,40 @@ def main():
|
|
| 18 |
st.markdown(
|
| 19 |
"""
|
| 20 |
Welcome to the Medical Q/A Chatbot! This application provides informational responses
|
| 21 |
-
to medical questions. Please note that this is for
|
| 22 |
-
not replace professional medical advice.
|
| 23 |
"""
|
| 24 |
)
|
| 25 |
|
| 26 |
# Sidebar configuration
|
| 27 |
with st.sidebar:
|
| 28 |
st.header("Configuration")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
model_choice = st.selectbox(
|
| 30 |
"Select Model",
|
| 31 |
-
["
|
| 32 |
index=0
|
| 33 |
)
|
| 34 |
|
|
@@ -37,7 +61,8 @@ def main():
|
|
| 37 |
min_value=0.0,
|
| 38 |
max_value=1.0,
|
| 39 |
value=0.7,
|
| 40 |
-
step=0.1
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
max_tokens = st.number_input(
|
|
@@ -45,7 +70,8 @@ def main():
|
|
| 45 |
min_value=100,
|
| 46 |
max_value=4000,
|
| 47 |
value=500,
|
| 48 |
-
step=100
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
# Chat interface
|
|
@@ -71,8 +97,9 @@ def main():
|
|
| 71 |
|
| 72 |
# Generate and display assistant response
|
| 73 |
with st.chat_message("assistant"):
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
|
| 77 |
# Add assistant response to chat history
|
| 78 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
@@ -84,34 +111,86 @@ def main():
|
|
| 84 |
|
| 85 |
def generate_medical_response(question: str, model: str, temperature: float, max_tokens: int) -> str:
|
| 86 |
"""
|
| 87 |
-
Generate a medical response
|
| 88 |
-
This is a placeholder function that would integrate with actual AI models.
|
| 89 |
"""
|
| 90 |
|
| 91 |
# Disclaimer message
|
| 92 |
-
disclaimer = "
|
| 93 |
-
|
| 94 |
-
# Placeholder response - in a real implementation, this would call an AI model
|
| 95 |
-
response = f"""
|
| 96 |
-
Thank you for your medical question: "{question}"
|
| 97 |
-
|
| 98 |
-
I understand you're seeking medical information. While I'd like to help, I'm currently a template
|
| 99 |
-
application that needs to be configured with proper medical AI models and knowledge bases.
|
| 100 |
-
|
| 101 |
-
To get this chatbot fully functional, you would need to:
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
+
import google.generativeai as genai
|
| 4 |
from typing import Optional
|
| 5 |
|
| 6 |
# Set page configuration
|
|
|
|
| 19 |
st.markdown(
|
| 20 |
"""
|
| 21 |
Welcome to the Medical Q/A Chatbot! This application provides informational responses
|
| 22 |
+
to medical questions using Google's Gemini 2.5 Flash API. Please note that this is for
|
| 23 |
+
educational purposes only and should not replace professional medical advice.
|
| 24 |
"""
|
| 25 |
)
|
| 26 |
|
| 27 |
# Sidebar configuration
|
| 28 |
with st.sidebar:
|
| 29 |
st.header("Configuration")
|
| 30 |
+
|
| 31 |
+
# API Key configuration
|
| 32 |
+
st.subheader("API Settings")
|
| 33 |
+
api_key = st.text_input(
|
| 34 |
+
"Gemini API Key",
|
| 35 |
+
type="password",
|
| 36 |
+
help="Enter your Google Gemini API key",
|
| 37 |
+
placeholder="AIzaSy..."
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# If API key is provided, set it as environment variable
|
| 41 |
+
if api_key:
|
| 42 |
+
os.environ['GEMINI_API_KEY'] = api_key
|
| 43 |
+
st.success("API Key configured successfully!")
|
| 44 |
+
else:
|
| 45 |
+
# Use default API key from environment if available
|
| 46 |
+
default_key = os.getenv('GEMINI_API_KEY', 'AIzaSyBEyc7iQCLXfry6V7pA0TDR1k0eriX_nDo')
|
| 47 |
+
if default_key:
|
| 48 |
+
os.environ['GEMINI_API_KEY'] = default_key
|
| 49 |
+
st.info("Using default API key from environment")
|
| 50 |
+
|
| 51 |
+
st.divider()
|
| 52 |
+
|
| 53 |
model_choice = st.selectbox(
|
| 54 |
"Select Model",
|
| 55 |
+
["Gemini 2.5 Flash", "Gemini Pro"],
|
| 56 |
index=0
|
| 57 |
)
|
| 58 |
|
|
|
|
| 61 |
min_value=0.0,
|
| 62 |
max_value=1.0,
|
| 63 |
value=0.7,
|
| 64 |
+
step=0.1,
|
| 65 |
+
help="Controls randomness in responses. Lower values are more focused and deterministic."
|
| 66 |
)
|
| 67 |
|
| 68 |
max_tokens = st.number_input(
|
|
|
|
| 70 |
min_value=100,
|
| 71 |
max_value=4000,
|
| 72 |
value=500,
|
| 73 |
+
step=100,
|
| 74 |
+
help="Maximum number of tokens in the response."
|
| 75 |
)
|
| 76 |
|
| 77 |
# Chat interface
|
|
|
|
| 97 |
|
| 98 |
# Generate and display assistant response
|
| 99 |
with st.chat_message("assistant"):
|
| 100 |
+
with st.spinner("Thinking..."):
|
| 101 |
+
response = generate_medical_response(prompt, model_choice, temperature, max_tokens)
|
| 102 |
+
st.markdown(response)
|
| 103 |
|
| 104 |
# Add assistant response to chat history
|
| 105 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
| 111 |
|
| 112 |
def generate_medical_response(question: str, model: str, temperature: float, max_tokens: int) -> str:
|
| 113 |
"""
|
| 114 |
+
Generate a medical response using Google's Gemini API.
|
|
|
|
| 115 |
"""
|
| 116 |
|
| 117 |
# Disclaimer message
|
| 118 |
+
disclaimer = "\n\n**Disclaimer**: This response is for informational purposes only and should not replace professional medical advice, diagnosis, or treatment. Always consult with a qualified healthcare provider for medical concerns."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
try:
|
| 121 |
+
# Get API key from environment
|
| 122 |
+
api_key = os.getenv('GEMINI_API_KEY')
|
| 123 |
+
if not api_key:
|
| 124 |
+
return "Error: No API key configured. Please set your Gemini API key in the sidebar." + disclaimer
|
| 125 |
+
|
| 126 |
+
# Configure the API
|
| 127 |
+
genai.configure(api_key=api_key)
|
| 128 |
+
|
| 129 |
+
# Select model based on choice
|
| 130 |
+
model_name = "gemini-2.5-flash" if "Flash" in model else "gemini-pro"
|
| 131 |
+
|
| 132 |
+
# Create the model with configuration
|
| 133 |
+
generation_config = {
|
| 134 |
+
"temperature": temperature,
|
| 135 |
+
"top_p": 1,
|
| 136 |
+
"top_k": 40,
|
| 137 |
+
"max_output_tokens": max_tokens,
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
model_instance = genai.GenerativeModel(
|
| 141 |
+
model_name=model_name,
|
| 142 |
+
generation_config=generation_config
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Create a medical-focused prompt
|
| 146 |
+
medical_prompt = f"""
|
| 147 |
+
You are a knowledgeable medical AI assistant. Please provide an informative and helpful response to the following medical question.
|
| 148 |
+
Your response should be:
|
| 149 |
+
- Medically accurate and evidence-based
|
| 150 |
+
- Clear and easy to understand
|
| 151 |
+
- Comprehensive but concise
|
| 152 |
+
- Include relevant medical terminology with explanations
|
| 153 |
+
- Always emphasize when professional medical consultation is needed
|
| 154 |
+
|
| 155 |
+
Question: {question}
|
| 156 |
+
|
| 157 |
+
Please provide a detailed medical response while always reminding the user that this is for educational purposes only and cannot replace professional medical advice.
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
# Generate response
|
| 161 |
+
response = model_instance.generate_content(medical_prompt)
|
| 162 |
+
|
| 163 |
+
if response and response.text:
|
| 164 |
+
return response.text + disclaimer
|
| 165 |
+
else:
|
| 166 |
+
return "I apologize, but I couldn't generate a response at this time. Please try again or rephrase your question." + disclaimer
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
error_msg = f"Error connecting to Gemini API: {str(e)}"
|
| 170 |
+
|
| 171 |
+
# Provide fallback response with helpful information
|
| 172 |
+
fallback_response = f"""
|
| 173 |
+
{error_msg}
|
| 174 |
+
|
| 175 |
+
I understand you're seeking medical information about: "{question}"
|
| 176 |
+
|
| 177 |
+
While I'm currently unable to provide a detailed response due to technical issues, I recommend:
|
| 178 |
+
|
| 179 |
+
1. **For urgent medical concerns**: Contact your healthcare provider immediately or call emergency services
|
| 180 |
+
2. **For general health questions**: Consult with your primary care physician
|
| 181 |
+
3. **For medication questions**: Speak with a pharmacist or your prescribing doctor
|
| 182 |
+
4. **For reliable medical information**: Visit reputable sources like:
|
| 183 |
+
- Mayo Clinic (mayoclinic.org)
|
| 184 |
+
- WebMD (webmd.com)
|
| 185 |
+
- MedlinePlus (medlineplus.gov)
|
| 186 |
+
|
| 187 |
+
**Current Configuration:**
|
| 188 |
+
- Model: {model}
|
| 189 |
+
- Temperature: {temperature}
|
| 190 |
+
- Max Tokens: {max_tokens}
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
return fallback_response + disclaimer
|
| 194 |
|
| 195 |
if __name__ == "__main__":
|
| 196 |
+
main()
|