Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Any | |
| import pytest | |
| from transformers import DataCollatorWithPadding | |
| from llamafactory.data import get_dataset, get_template_and_fix_tokenizer | |
| from llamafactory.hparams import get_train_args | |
| from llamafactory.model import load_model, load_tokenizer | |
| from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer | |
| DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") | |
| TINY_LLAMA3 = os.getenv("TINY_LLAMA3", "llamafactory/tiny-random-Llama-3") | |
| TRAIN_ARGS = { | |
| "model_name_or_path": TINY_LLAMA3, | |
| "stage": "sft", | |
| "do_train": True, | |
| "finetuning_type": "lora", | |
| "dataset": "llamafactory/tiny-supervised-dataset", | |
| "dataset_dir": "ONLINE", | |
| "template": "llama3", | |
| "cutoff_len": 1024, | |
| "overwrite_output_dir": True, | |
| "per_device_train_batch_size": 1, | |
| "max_steps": 1, | |
| "report_to": "none", | |
| } | |
| class DataCollatorWithVerbose(DataCollatorWithPadding): | |
| verbose_list: list[dict[str, Any]] = field(default_factory=list) | |
| def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]: | |
| features = [ | |
| {k: v for k, v in feature.items() if k in ["input_ids", "attention_mask", "labels"]} | |
| for feature in features | |
| ] | |
| self.verbose_list.extend(features) | |
| batch = super().__call__(features) | |
| return {k: v[:, :1] for k, v in batch.items()} # truncate input length | |
| def test_shuffle(disable_shuffling: bool): | |
| model_args, data_args, training_args, finetuning_args, _ = get_train_args( | |
| { | |
| "output_dir": os.path.join("output", f"shuffle{str(disable_shuffling).lower()}"), | |
| "disable_shuffling": disable_shuffling, | |
| **TRAIN_ARGS, | |
| } | |
| ) | |
| tokenizer_module = load_tokenizer(model_args) | |
| tokenizer = tokenizer_module["tokenizer"] | |
| template = get_template_and_fix_tokenizer(tokenizer, data_args) | |
| dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
| model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
| data_collator = DataCollatorWithVerbose(tokenizer=tokenizer) | |
| trainer = CustomSeq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| finetuning_args=finetuning_args, | |
| data_collator=data_collator, | |
| **dataset_module, | |
| **tokenizer_module, | |
| ) | |
| trainer.train() | |
| if disable_shuffling: | |
| assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"] | |
| else: | |
| assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"] | |