Spaces:
Running
on
A100
Running
on
A100
File size: 11,436 Bytes
ae238b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import json
import logging
import os
import tempfile
import torch
from audio_transcription import perform_forced_alignment
from media_transcription_processor import MediaTranscriptionProcessor
from transcription_status import transcription_status
from omnilingual_asr.models.wav2vec2_llama.lang_ids import supported_langs
from env_vars import API_LOG_LEVEL, MODEL_NAME
from flask import Blueprint, jsonify, request, send_file
from video_utils import check_ffmpeg_available, combine_video_with_subtitles
transcriptions_blueprint = Blueprint(
"transcriptions_blueprint",
__name__,
)
logger = logging.getLogger(__name__)
logger.level = API_LOG_LEVEL
logging.getLogger("boto3").setLevel(API_LOG_LEVEL)
logging.getLogger("botocore").setLevel(API_LOG_LEVEL)
MAX_SHORTFORM_DURATION = 10 # seconds
@transcriptions_blueprint.route("/health")
def health():
"""Comprehensive health check endpoint"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cuda_available = torch.cuda.is_available()
ffmpeg_available = check_ffmpeg_available()
# Get transcription status
transcription_info = MediaTranscriptionProcessor.get_server_status()
# Get GPU details if CUDA is available
gpu_info = {}
if cuda_available:
gpu_info = {
"gpu_count": torch.cuda.device_count(),
"current_device": torch.cuda.current_device(),
"gpu_name": (
torch.cuda.get_device_name(0)
if torch.cuda.device_count() > 0
else "Unknown"
),
}
# Add GPU memory information
try:
current_device = torch.cuda.current_device()
memory_allocated = torch.cuda.memory_allocated(current_device)
memory_reserved = torch.cuda.memory_reserved(current_device)
memory_total = torch.cuda.get_device_properties(current_device).total_memory
gpu_info.update(
{
"gpu_memory_allocated_mb": round(memory_allocated / 1024 / 1024, 1),
"gpu_memory_reserved_mb": round(memory_reserved / 1024 / 1024, 1),
"gpu_memory_total_mb": round(memory_total / 1024 / 1024, 1),
"gpu_memory_free_mb": round(
(memory_total - memory_reserved) / 1024 / 1024, 1
),
}
)
except Exception as e:
logger.warning(f"Could not get GPU memory info: {e}")
return {
"status": "healthy",
"message": "MMS Transcription API is running",
"version": "1.0.0",
"service": "mms-transcription",
"device": str(device),
"cuda_available": cuda_available,
"ffmpeg_available": ffmpeg_available,
"transcription_status": transcription_info,
**gpu_info,
}
@transcriptions_blueprint.route("/supported-languages")
def get_supported_languages():
"""Get list of supported languages for transcription"""
try:
return jsonify({
"supported_languages": supported_langs,
})
except Exception as e:
logger.error(f"Error getting supported languages: {str(e)}")
return jsonify({
"error": "Could not retrieve supported languages",
"message": str(e)
}), 500
@transcriptions_blueprint.route("/status")
def get_transcription_status():
"""Get current transcription status"""
return jsonify(MediaTranscriptionProcessor.get_server_status())
@transcriptions_blueprint.route("/transcribe", methods=["POST"])
def transcribe_audio():
"""Transcribe media using the MMS model with intelligent chunking for all audio/video files"""
try:
# Check if server is busy
if MediaTranscriptionProcessor.is_server_busy():
status = MediaTranscriptionProcessor.get_server_status()
return (
jsonify(
{
"error": "Server is currently processing another transcription",
"status": "busy",
"current_operation": status.get("current_operation"),
}
),
503,
)
# Check if media file is provided
if "media" not in request.files:
return jsonify({"error": "No media file provided"}), 400
media_file = request.files["media"]
if media_file.filename == "":
return jsonify({"error": "No file selected"}), 400
# Get optional language parameter
language_with_script = request.form.get("language", None)
if language_with_script:
logger.info(f"Language specified: {language_with_script}")
else:
logger.info("No language specified, using auto-detection")
# Get optional include_preprocessed parameter (from form data or query string)
include_preprocessed = (
request.form.get("include_preprocessed", "false").lower() == "true" or
request.args.get("include_preprocessed", "false").lower() == "true"
)
if include_preprocessed:
logger.info("Preprocessed audio will be included in response")
# Mark as busy and start transcription
# This will be handled by the processor
# Read file bytes once
media_bytes = media_file.read()
try:
# Use the MediaTranscriptionProcessor with context manager for automatic cleanup
with MediaTranscriptionProcessor(media_bytes, media_file.filename, language_with_script) as processor:
# Start transcription status tracking
processor.start_transcription()
# Stage 1: Convert media (this also calculates duration and updates progress)
processor.convert_media()
logger.info(f"Media conversion completed for: {media_file.filename}")
# Stage 2: Run full transcription pipeline (this also updates progress)
processor.transcribe_full_pipeline()
# Get final results with optional preprocessed audio
results = processor.get_results(include_preprocessed_audio=include_preprocessed)
logger.info(f"Transcription completed: {results.get('num_chunks', 0)} chunks")
# Format response
response = {
"transcription": results.get("transcription", ""),
"aligned_segments": results.get("aligned_segments", []),
"chunks": results.get("chunks", []),
"total_duration": results.get("total_duration", 0.0),
"num_chunks": results.get("num_chunks", 0),
"num_segments": results.get("num_segments", 0),
"model": MODEL_NAME,
"device": str(torch.device("cuda:0" if torch.cuda.is_available() else "cpu")),
"status": results.get("status", "success"),
}
# Add preprocessed audio if it was included in results
if "preprocessed_audio" in results:
response["preprocessed_audio"] = results["preprocessed_audio"]
if "error" in results:
response["error"] = results["error"]
logger.error(f"Transcription response with error: {response}")
return jsonify(response), 500
# Print out the complete response for debugging
logger.info("=== TRANSCRIBE RESPONSE ===")
# logger.info(f"Full response: {json.dumps(response, indent=2)}")
logger.info("=== END TRANSCRIBE RESPONSE ===")
return jsonify(response)
# Context manager automatically handles cleanup and status finalization here
except Exception as e:
logger.error(f"Media conversion/transcription error: {str(e)}")
return jsonify({"error": f"Media processing failed: {str(e)}"}), 500
except Exception as e:
logger.error(f"Transcription error: {str(e)}")
return jsonify({"error": f"Transcription failed: {str(e)}"}), 500
@transcriptions_blueprint.route("/combine-video-subtitles", methods=["POST"])
def combine_video_subtitles():
"""Combine video with subtitles using FFmpeg"""
try:
# Check if server is busy
if MediaTranscriptionProcessor.is_server_busy():
status = MediaTranscriptionProcessor.get_server_status()
return (
jsonify(
{
"error": "Server is currently processing another request",
"status": "busy",
"current_operation": status.get("current_operation"),
}
),
503,
)
# Check required fields
if "video" not in request.files:
return jsonify({"error": "No video file provided"}), 400
if "subtitles" not in request.form:
return jsonify({"error": "No subtitles provided"}), 400
video_file = request.files["video"]
subtitles = request.form["subtitles"]
if video_file.filename == "":
return jsonify({"error": "No video file selected"}), 400
# Get optional parameters
subtitle_format = request.form.get("format", "srt") # srt or webvtt
output_format = request.form.get("output_format", "mp4") # mp4 or mkv
language = request.form.get("language", "eng")
# Mark as busy and start processing
transcription_status.start_transcription("combine_video", video_file.filename)
try:
transcription_status.update_progress(0.1)
# Save the uploaded video file to a temporary location
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(video_file.filename)[1]) as temp_video:
video_file.save(temp_video.name)
temp_video_path = temp_video.name
transcription_status.update_progress(0.3)
try:
# Combine video with subtitles using video_utils function
output_path = combine_video_with_subtitles(
temp_video_path, subtitles, subtitle_format, output_format, language
)
transcription_status.update_progress(0.9)
logger.info(f"Video combination completed: {output_path}")
# Return the combined video file
return send_file(
output_path,
as_attachment=True,
download_name=f"{video_file.filename.rsplit('.', 1)[0]}_with_subtitles.{output_format}",
mimetype=f"video/{output_format}",
)
finally:
# Clean up temporary video file
try:
os.unlink(temp_video_path)
except OSError:
pass
finally:
# Mark transcription as finished
transcription_status.finish_transcription()
except Exception as e:
transcription_status.finish_transcription()
logger.error(f"Video combination error: {str(e)}")
return jsonify({"error": f"Video combination failed: {str(e)}"}), 500
|