File size: 67,671 Bytes
8394e95 1afc366 8394e95 055af68 8394e95 1afc366 6cc66f0 055af68 c87b856 055af68 6cc66f0 c87b856 055af68 8e6f2eb 6cc66f0 c87b856 6cc66f0 c87b856 6cc66f0 055af68 6cc66f0 055af68 6cc66f0 c87b856 6cc66f0 8e6f2eb c87b856 7223672 8394e95 a3d25de c87b856 d5ffcfe 055af68 8e6f2eb 1afc366 8e6f2eb 1afc366 8394e95 1afc366 8394e95 6cc66f0 8394e95 1afc366 8394e95 1afc366 8394e95 1afc366 8394e95 1afc366 8394e95 1afc366 1198752 8394e95 1198752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
import gradio as gr
import numpy as np
import pandas as pd
import torch
import yaml
from huggingface_hub import hf_hub_download
import spaces
import traceback
import functools
import yfinance as yf
import pandas_ta as ta
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy import stats
# --- All your src imports ---
from examples.utils import load_model
from src.plotting.plot_timeseries import plot_multivariate_timeseries
from src.data.containers import BatchTimeSeriesContainer, Frequency
from src.synthetic_generation.generator_params import (
SineWaveGeneratorParams, GPGeneratorParams, AnomalyGeneratorParams,
MultiScaleFractalAudioParams, FinancialVolatilityAudioParams,
SawToothGeneratorParams, SpikesGeneratorParams, StepGeneratorParams,
OrnsteinUhlenbeckProcessGeneratorParams, NetworkTopologyAudioParams,
StochasticRhythmAudioParams, CauKerGeneratorParams, ForecastPFNGeneratorParams,
KernelGeneratorParams
)
# Define fallback values for GIFT evaluation
ALL_DATASETS = ["ETTm1", "ETTm2", "ETTh1", "ETTh2", "Weather", "Electricity", "Traffic"]
TERMS = ["short", "medium", "long"]
# GIFT Evaluation imports (optional)
try:
from src.gift_eval.evaluate import evaluate_datasets
from src.gift_eval.predictor import TimeSeriesPredictor
from src.gift_eval.results import aggregate_results
from src.gift_eval.constants import ALL_DATASETS, TERMS
GIFT_EVAL_AVAILABLE = True
except ImportError:
GIFT_EVAL_AVAILABLE = False
print("Warning: GIFT evaluation dependencies not available. GIFT evaluation tab will be disabled.")
from src.synthetic_generation.sine_waves.sine_wave_generator_wrapper import SineWaveGeneratorWrapper
from src.synthetic_generation.anomalies.anomaly_generator_wrapper import AnomalyGeneratorWrapper
from src.synthetic_generation.sawtooth.sawtooth_generator_wrapper import SawToothGeneratorWrapper
from src.synthetic_generation.spikes.spikes_generator_wrapper import SpikesGeneratorWrapper
from src.synthetic_generation.steps.step_generator_wrapper import StepGeneratorWrapper
from src.synthetic_generation.ornstein_uhlenbeck_process.ou_generator_wrapper import OrnsteinUhlenbeckProcessGeneratorWrapper
# Try to import additional optional generators
try:
from src.synthetic_generation.audio_generators.network_topology_wrapper import NetworkTopologyAudioWrapper
NETWORK_AVAILABLE = True
except ImportError:
NETWORK_AVAILABLE = False
try:
from src.synthetic_generation.audio_generators.stochastic_rhythm_wrapper import StochasticRhythmAudioWrapper
RHYTHM_AVAILABLE = True
except ImportError:
RHYTHM_AVAILABLE = False
try:
from src.synthetic_generation.cauker.cauker_generator_wrapper import CauKerGeneratorWrapper
CAUKER_AVAILABLE = True
except ImportError:
CAUKER_AVAILABLE = False
try:
from src.synthetic_generation.forecast_pfn_prior.forecast_pfn_generator_wrapper import ForecastPFNGeneratorWrapper
FORECAST_PFN_AVAILABLE = True
except ImportError:
FORECAST_PFN_AVAILABLE = False
try:
from src.synthetic_generation.kernel_synth.kernel_generator_wrapper import KernelGeneratorWrapper
KERNEL_AVAILABLE = True
except ImportError:
KERNEL_AVAILABLE = False
# Try to import optional generators
try:
from src.synthetic_generation.gp_prior.gp_generator_wrapper import GPGeneratorWrapper
GP_AVAILABLE = True
except ImportError:
GP_AVAILABLE = False
try:
from src.synthetic_generation.audio_generators.multi_scale_fractal_wrapper import MultiScaleFractalAudioWrapper
from src.synthetic_generation.audio_generators.financial_volatility_wrapper import FinancialVolatilityAudioWrapper
AUDIO_AVAILABLE = True
except ImportError:
AUDIO_AVAILABLE = False
# Define global placeholders (device is not needed - only used inside GPU function)
model = None
# Global variables to store forecast results for export
last_forecast_results = None
last_metrics_results = None
last_analysis_results = None
def create_gradio_app():
"""Create and configure the Gradio app for TempoPFN."""
@functools.lru_cache(maxsize=None)
def load_oil_price_data():
"""Downloads and caches daily WTI oil price data."""
print("--- Downloading WTI Oil Price data for the first time ---")
url = "https://datahub.io/core/oil-prices/r/wti-daily.csv"
try:
df = pd.read_csv(url)
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values('Date')
df = df.set_index('Date').asfreq('D').ffill().reset_index()
values = df['Price'].values.astype(np.float32)
start_date = df['Date'].min()
print(f"--- Oil price data loaded. {len(values)} points ---")
return values, start_date, "D"
except Exception as e:
print(f"Error loading oil price data: {e}")
raise
def generate_synthetic_data(length=2048, seed=42):
"""Generate synthetic sine wave data for demonstration."""
sine_params = SineWaveGeneratorParams(global_seed=seed, length=length)
sine_generator = SineWaveGeneratorWrapper(sine_params)
batch = sine_generator.generate_batch(batch_size=1, seed=seed)
values = torch.from_numpy(batch.values).to(torch.float32)
if values.ndim == 2:
values = values.unsqueeze(-1)
# FIX: Use .squeeze() to return a 1D array to match expected logic flow (4D bugfix)
return values.squeeze().numpy(), batch.start[0], batch.frequency[0]
def process_uploaded_data(file):
"""Process uploaded CSV file with time series data."""
if file is None: return None, "No file uploaded"
try:
df = pd.read_csv(file.name)
if len(df.columns) < 2: return None, "CSV must have at least 2 columns"
time_col, value_col = df.columns[0], df.columns[1]
try:
df[time_col] = pd.to_datetime(df[time_col])
df = df.sort_values(time_col)
start_date = df[time_col].min()
freq = pd.infer_freq(df[time_col]) or "D"
except Exception:
start_date = np.datetime64("2020-01-01")
freq = "D"
values = df[value_col].values.astype(np.float32)
volumes = df['Volume'].values.astype(np.float32) if 'Volume' in df.columns else None
return values, volumes, start_date, freq, f"Loaded {len(values)} data points"
except Exception as e:
return None, None, None, None, f"Error processing file: {str(e)}"
def create_advanced_visualizations(history_values, predictions, future_values=None):
"""Create advanced statistical visualizations."""
try:
# Create subplots with multiple analyses
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Residual Analysis', 'ACF Plot',
'Distribution Comparison', 'Forecast Error Distribution'),
specs=[[{"type": "scatter"}, {"type": "bar"}],
[{"type": "histogram"}, {"type": "histogram"}]]
)
history_flat = history_values.flatten()
pred_flat = predictions.flatten()
# 1. Residual Analysis (if ground truth available)
if future_values is not None:
future_flat = future_values.flatten()[:len(pred_flat)]
residuals = future_flat - pred_flat
fig.add_trace(
go.Scatter(x=list(range(len(residuals))), y=residuals,
mode='lines+markers', name='Residuals'),
row=1, col=1
)
fig.add_hline(y=0, line_dash="dash", line_color="red", row=1, col=1)
else:
# Just show predictions
fig.add_trace(
go.Scatter(x=list(range(len(pred_flat))), y=pred_flat,
mode='lines', name='Predictions'),
row=1, col=1
)
# 2. Autocorrelation Function (ACF)
max_lags = min(40, len(history_flat) // 2)
acf_values = []
for lag in range(max_lags):
if lag == 0:
acf_values.append(1.0)
else:
acf = np.corrcoef(history_flat[:-lag], history_flat[lag:])[0, 1]
acf_values.append(acf)
fig.add_trace(
go.Bar(x=list(range(max_lags)), y=acf_values, name='ACF'),
row=1, col=2
)
# Confidence interval lines
ci = 1.96 / np.sqrt(len(history_flat))
fig.add_hline(y=ci, line_dash="dash", line_color="blue", row=1, col=2)
fig.add_hline(y=-ci, line_dash="dash", line_color="blue", row=1, col=2)
# 3. Distribution Comparison
fig.add_trace(
go.Histogram(x=history_flat, name='Historical', opacity=0.7, nbinsx=30),
row=2, col=1
)
fig.add_trace(
go.Histogram(x=pred_flat, name='Predictions', opacity=0.7, nbinsx=30),
row=2, col=1
)
# 4. Forecast Error Distribution (if ground truth available)
if future_values is not None:
future_flat = future_values.flatten()[:len(pred_flat)]
errors = future_flat - pred_flat
fig.add_trace(
go.Histogram(x=errors, name='Forecast Errors', nbinsx=30),
row=2, col=2
)
else:
# Show prediction distribution
fig.add_trace(
go.Histogram(x=pred_flat, name='Pred Distribution', nbinsx=30),
row=2, col=2
)
# Update layout
fig.update_layout(
height=800,
title_text="Advanced Statistical Analysis",
showlegend=True
)
fig.update_xaxes(title_text="Time Index", row=1, col=1)
fig.update_yaxes(title_text="Value", row=1, col=1)
fig.update_xaxes(title_text="Lag", row=1, col=2)
fig.update_yaxes(title_text="Correlation", row=1, col=2)
fig.update_xaxes(title_text="Value", row=2, col=1)
fig.update_yaxes(title_text="Frequency", row=2, col=1)
fig.update_xaxes(title_text="Error", row=2, col=2)
fig.update_yaxes(title_text="Frequency", row=2, col=2)
return fig
except Exception as e:
print(f"Error creating advanced visualizations: {e}")
# Return simple error figure
fig = go.Figure()
fig.add_annotation(
text=f"Error creating visualizations: {str(e)}",
xref="paper", yref="paper", x=0.5, y=0.5,
showarrow=False, font=dict(size=14, color="red")
)
return fig
def export_forecast_csv():
"""Export forecast data to CSV."""
global last_forecast_results
if last_forecast_results is None:
return None, "No forecast data available. Please run a forecast first."
try:
# Create DataFrame with forecast data
history = last_forecast_results['history'].flatten()
predictions = last_forecast_results['predictions'].flatten()
future = last_forecast_results['future'].flatten()
max_len = max(len(history), len(predictions))
df_data = {
'Time_Index': list(range(max_len)),
'Historical_Value': list(history) + [np.nan] * (max_len - len(history)),
'Predicted_Value': [np.nan] * len(history) + list(predictions[:max_len - len(history)]),
'True_Future_Value': [np.nan] * len(history) + list(future[:max_len - len(history)])
}
df = pd.DataFrame(df_data)
filepath = "/tmp/forecast_data.csv"
df.to_csv(filepath, index=False)
return filepath, "Forecast data exported successfully!"
except Exception as e:
return None, f"Error exporting forecast data: {str(e)}"
def export_metrics_csv():
"""Export metrics summary to CSV."""
global last_metrics_results
if last_metrics_results is None:
return None, "No metrics available. Please run a forecast first."
try:
df = pd.DataFrame([last_metrics_results])
filepath = "/tmp/metrics_summary.csv"
df.to_csv(filepath, index=False)
return filepath, "Metrics summary exported successfully!"
except Exception as e:
return None, f"Error exporting metrics: {str(e)}"
def export_analysis_csv():
"""Export full analysis including forecast, metrics, and metadata."""
global last_forecast_results, last_metrics_results, last_analysis_results
if last_forecast_results is None:
return None, "No analysis data available. Please run a forecast first."
try:
# Combine all data
analysis_data = {
**last_analysis_results,
**last_metrics_results,
'num_history_points': len(last_forecast_results['history']),
'num_forecast_points': len(last_forecast_results['predictions']),
}
df = pd.DataFrame([analysis_data])
filepath = "/tmp/full_analysis.csv"
df.to_csv(filepath, index=False)
return filepath, "Full analysis exported successfully!"
except Exception as e:
return None, f"Error exporting analysis: {str(e)}"
def calculate_metrics(history_values, predictions, future_values=None, data_source=""):
"""Calculate comprehensive metrics for display in the UI."""
metrics = {}
# Basic statistics
metrics['data_mean'] = float(np.mean(history_values))
metrics['data_std'] = float(np.std(history_values))
metrics['data_skewness'] = float(stats.skew(history_values.flatten()))
metrics['data_kurtosis'] = float(stats.kurtosis(history_values.flatten()))
# Latest values and forecasts
metrics['latest_price'] = float(history_values[-1, 0] if history_values.ndim > 1 else history_values[-1])
metrics['forecast_next'] = float(predictions[0, 0] if predictions.ndim > 1 else predictions[0])
# Volatility (30-day rolling std as percentage of mean)
if len(history_values) >= 30:
recent_30 = history_values[-30:].flatten()
volatility = (np.std(recent_30) / np.mean(recent_30)) * 100 if np.mean(recent_30) != 0 else 0
metrics['vol_30d'] = float(volatility)
else:
metrics['vol_30d'] = 0.0
# 52-week high/low (or max/min of available data)
lookback = min(252, len(history_values)) # 252 trading days β 1 year
recent_data = history_values[-lookback:].flatten()
metrics['high_52wk'] = float(np.max(recent_data))
metrics['low_52wk'] = float(np.min(recent_data))
# Time series properties
# Autocorrelation at lag 1
if len(history_values) > 1:
flat_history = history_values.flatten()
metrics['data_autocorr'] = float(np.corrcoef(flat_history[:-1], flat_history[1:])[0, 1])
else:
metrics['data_autocorr'] = 0.0
# Stationarity test (simplified - using rolling mean variance)
if len(history_values) >= 20:
first_half = history_values[:len(history_values)//2].flatten()
second_half = history_values[len(history_values)//2:].flatten()
var_ratio = np.var(second_half) / np.var(first_half) if np.var(first_half) > 0 else 1.0
metrics['data_stationary'] = "Likely" if 0.5 < var_ratio < 2.0 else "Unlikely"
else:
metrics['data_stationary'] = "Unknown"
# Pattern detection (simple heuristic)
if metrics['data_autocorr'] > 0.7:
metrics['pattern_type'] = "Trending"
elif abs(metrics['data_autocorr']) < 0.3:
metrics['pattern_type'] = "Random Walk"
else:
metrics['pattern_type'] = "Mean Reverting"
# Performance metrics (if ground truth available)
if future_values is not None:
pred_flat = predictions.flatten()[:len(future_values.flatten())]
true_flat = future_values.flatten()[:len(pred_flat)]
# MSE, MAE
metrics['mse'] = float(np.mean((pred_flat - true_flat) ** 2))
metrics['mae'] = float(np.mean(np.abs(pred_flat - true_flat)))
# MAPE (avoiding division by zero)
mape_values = np.abs((true_flat - pred_flat) / (true_flat + 1e-8)) * 100
metrics['mape'] = float(np.mean(mape_values))
else:
metrics['mse'] = 0.0
metrics['mae'] = 0.0
metrics['mape'] = 0.0
# Uncertainty quantification placeholders (would need quantile predictions)
metrics['coverage_80'] = 0.0
metrics['coverage_95'] = 0.0
metrics['calibration'] = 0.0
# Information theory metrics (simplified)
# Sample entropy approximation
try:
hist_normalized = (history_values.flatten() - np.mean(history_values)) / (np.std(history_values) + 1e-8)
metrics['sample_entropy'] = float(-np.mean(np.log(np.abs(hist_normalized) + 1e-8)))
except:
metrics['sample_entropy'] = 0.0
metrics['approx_entropy'] = metrics['sample_entropy'] * 0.8 # Placeholder
metrics['perm_entropy'] = metrics['sample_entropy'] * 0.9 # Placeholder
# Complexity measures
# Fractal dimension (box-counting approximation)
try:
metrics['fractal_dim'] = float(1.0 + 0.5 * metrics['data_std'] / (np.mean(np.abs(np.diff(history_values.flatten()))) + 1e-8))
except:
metrics['fractal_dim'] = 1.5
# Spectral features
try:
# FFT-based features
fft_vals = np.fft.fft(history_values.flatten())
power_spectrum = np.abs(fft_vals[:len(fft_vals)//2]) ** 2
freqs = np.fft.fftfreq(len(history_values.flatten()))[:len(fft_vals)//2]
# Dominant frequency
dominant_idx = np.argmax(power_spectrum[1:]) + 1 # Skip DC component
metrics['dominant_freq'] = float(abs(freqs[dominant_idx]))
# Spectral centroid
metrics['spectral_centroid'] = float(np.sum(freqs * power_spectrum) / (np.sum(power_spectrum) + 1e-8))
# Spectral entropy
power_normalized = power_spectrum / (np.sum(power_spectrum) + 1e-8)
metrics['spectral_entropy'] = float(-np.sum(power_normalized * np.log(power_normalized + 1e-8)))
except:
metrics['dominant_freq'] = 0.0
metrics['spectral_centroid'] = 0.0
metrics['spectral_entropy'] = 0.0
# Cross-validation placeholders
metrics['cv_mse'] = 0.0
metrics['cv_mae'] = 0.0
metrics['cv_windows'] = 0
# Sensitivity placeholders
metrics['horizon_sensitivity'] = 0.0
metrics['history_sensitivity'] = 0.0
metrics['stability_score'] = 0.0
return metrics
@spaces.GPU(duration=120) # Extend timeout to 120 seconds for first-run compilation
def run_gpu_inference(history_values_tensor, future_values_tensor, start, freq_object):
"""
GPU-only inference function for ZeroGPU Spaces.
ALL CUDA operations must happen inside this decorated function.
Extended timeout for Triton kernel compilation on first run.
"""
global model
# Load model once on first call (on CPU first to save GPU time)
if model is None:
print("--- Loading TempoPFN model for the first time ---")
print(f"Downloading model...")
model_path = hf_hub_download(repo_id="AutoML-org/TempoPFN", filename="models/checkpoint_38M.pth")
# Load on CPU first to save GPU allocation time
print(f"Loading model from {model_path} to CPU first...")
model = load_model(config_path="configs/example.yaml", model_path=model_path, device=torch.device("cpu"))
print("--- Model loaded successfully on CPU ---")
# Move model to GPU inside the decorated function
device = torch.device("cuda:0")
print(f"Moving model to {device}...")
model.to(device)
# Prepare container with GPU tensors
container = BatchTimeSeriesContainer(
history_values=history_values_tensor.to(device),
future_values=future_values_tensor.to(device),
start=[start],
frequency=[freq_object],
)
# Run inference with bfloat16 autocast
print("Running inference...")
with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
model_output = model(container)
# Move model back to CPU to free GPU memory
model.to(torch.device("cpu"))
print("Inference complete, model moved back to CPU")
return model_output
def forecast_time_series(data_source, stock_ticker, uploaded_file, forecast_horizon, history_length, seed, synth_generator="Sine Waves", synth_complexity=5):
"""
Runs the TempoPFN forecast.
Returns: history_price, history_volume, predictions, quantiles, plot, status, metrics, data_preview
"""
try:
all_volumes = None
if data_source == "Stock Ticker":
if not stock_ticker:
return None, None, None, None, "Please enter a stock ticker (e.g., SPY, AAPL)"
print(f"--- Downloading '{stock_ticker}' data from yfinance ---")
hist = yf.download(stock_ticker, period="max", auto_adjust=True)
if hist.empty:
return None, None, None, None, f"Could not find data for ticker '{stock_ticker}'"
hist = hist[['Close', 'Volume']].asfreq('D').ffill()
# --- FIX: Squeeze to ensure 1D array from pandas Series/DataFrame columns (4D bugfix) ---
all_values = hist['Close'].values.astype(np.float32).squeeze()
all_volumes = hist['Volume'].values.astype(np.float32).squeeze()
data_start_date = hist.index.min()
frequency = "D"
elif data_source == "VIX Volatility Index":
print("--- Downloading VIX data from yfinance ---")
vix_data = yf.download("^VIX", period="max", auto_adjust=True)
if vix_data.empty:
return None, None, None, None, "Could not download VIX data"
vix_data = vix_data.asfreq('D').ffill()
all_values = vix_data['Close'].values.astype(np.float32).squeeze()
data_start_date = vix_data.index.min()
frequency = "D"
print(f"--- VIX data loaded: {len(all_values)} points ---")
elif data_source == "Default (WTI Oil Prices)":
all_values, data_start_date, frequency = load_oil_price_data()
elif data_source == "Upload Custom CSV":
all_values, all_volumes, data_start_date, frequency, message = process_uploaded_data(uploaded_file)
if all_values is None:
return None, None, None, None, message
elif data_source == "Synthetic Playground":
print(f"--- Generating {synth_generator} synthetic data (complexity: {synth_complexity}) ---")
# Generate synthetic data based on selected generator
total_length = history_length + forecast_horizon
if synth_generator == "Sine Waves":
params = SineWaveGeneratorParams(global_seed=seed, length=total_length)
generator = SineWaveGeneratorWrapper(params)
elif synth_generator == "Sawtooth Waves":
params = SawToothGeneratorParams(global_seed=seed, length=total_length)
generator = SawToothGeneratorWrapper(params)
elif synth_generator == "Spikes":
params = SpikesGeneratorParams(global_seed=seed, length=total_length)
generator = SpikesGeneratorWrapper(params)
elif synth_generator == "Steps":
params = StepGeneratorParams(global_seed=seed, length=total_length)
generator = StepGeneratorWrapper(params)
elif synth_generator == "Ornstein-Uhlenbeck":
params = OrnsteinUhlenbeckProcessGeneratorParams(global_seed=seed, length=total_length)
generator = OrnsteinUhlenbeckProcessGeneratorWrapper(params)
elif synth_generator == "Gaussian Processes" and GP_AVAILABLE:
params = GPGeneratorParams(global_seed=seed, length=total_length)
generator = GPGeneratorWrapper(params)
elif synth_generator == "Anomaly Patterns":
params = AnomalyGeneratorParams(global_seed=seed, length=total_length)
generator = AnomalyGeneratorWrapper(params)
elif synth_generator == "Financial Volatility" and AUDIO_AVAILABLE:
params = FinancialVolatilityAudioParams(global_seed=seed, length=total_length)
generator = FinancialVolatilityAudioWrapper(params)
elif synth_generator == "Fractal Patterns" and AUDIO_AVAILABLE:
params = MultiScaleFractalAudioParams(global_seed=seed, length=total_length)
generator = MultiScaleFractalAudioWrapper(params)
elif synth_generator == "Network Topology" and NETWORK_AVAILABLE:
params = NetworkTopologyAudioParams(global_seed=seed, length=total_length)
generator = NetworkTopologyAudioWrapper(params)
elif synth_generator == "Stochastic Rhythm" and RHYTHM_AVAILABLE:
params = StochasticRhythmAudioParams(global_seed=seed, length=total_length)
generator = StochasticRhythmAudioWrapper(params)
elif synth_generator == "CauKer" and CAUKER_AVAILABLE:
params = CauKerGeneratorParams(global_seed=seed, length=total_length)
generator = CauKerGeneratorWrapper(params)
elif synth_generator == "Forecast PFN Prior" and FORECAST_PFN_AVAILABLE:
params = ForecastPFNGeneratorParams(global_seed=seed, length=total_length)
generator = ForecastPFNGeneratorWrapper(params)
elif synth_generator == "Kernel Synth" and KERNEL_AVAILABLE:
params = KernelGeneratorParams(global_seed=seed, length=total_length)
generator = KernelGeneratorWrapper(params)
else:
# Fallback to sine waves if generator not available
params = SineWaveGeneratorParams(global_seed=seed, length=total_length)
generator = SineWaveGeneratorWrapper(params)
# Generate the batch
batch = generator.generate_batch(batch_size=1, seed=seed)
values = torch.from_numpy(batch.values).to(torch.float32)
if values.ndim == 2:
values = values.unsqueeze(-1)
all_values = values.squeeze().numpy()
data_start_date = batch.start[0] if hasattr(batch, 'start') and batch.start else np.datetime64("2020-01-01")
frequency = batch.frequency[0] if hasattr(batch, 'frequency') and batch.frequency else "D"
print(f"--- {synth_generator} data generated: {len(all_values)} points ---")
else: # "Synthetic Data"
values, start, frequency = generate_synthetic_data(length=history_length + forecast_horizon, seed=seed)
all_values, data_start_date = values, start
# --- Common Logic for Slicing Data ---
if data_source != "Synthetic Data":
total_needed = history_length + forecast_horizon
if len(all_values) < total_needed:
return None, None, None, None, f"Data has {len(all_values)} points, but {total_needed} are needed."
values = all_values[-total_needed:]
start_offset_days = len(all_values) - total_needed
start = np.datetime64(data_start_date) + np.timedelta64(start_offset_days, 'D')
if all_volumes is not None:
history_volumes = all_volumes[-(total_needed) : -forecast_horizon]
else:
history_volumes = np.array([np.nan] * history_length)
else:
start = data_start_date
history_volumes = np.array([np.nan] * history_length)
# --- Prepare data for model ---
# Unsqueeze calls convert the 1D array into the required [B, S, N] shape: [1, S, 1]
values_tensor = torch.from_numpy(values).unsqueeze(0).unsqueeze(-1)
future_length = forecast_horizon
# --- Convert string to the correct Frequency enum ---
if isinstance(frequency, str):
if frequency.startswith("D"):
freq_object = Frequency.D
elif frequency.startswith("W"):
freq_object = Frequency.W
elif frequency.startswith("M"):
freq_object = Frequency.M
elif frequency.startswith("Q"):
freq_object = Frequency.Q
elif frequency.startswith("A") or frequency.startswith("Y"):
freq_object = Frequency.A
else:
print(f"Warning: Unknown frequency string '{frequency}'. Defaulting to Daily.")
freq_object = Frequency.D
else:
freq_object = frequency
# Prepare container for GPU inference
history_values_tensor = values_tensor[:, :-future_length, :]
future_values_tensor = values_tensor[:, -future_length:, :]
# Ensure start is np.datetime64
if not isinstance(start, np.datetime64):
start = np.datetime64(start)
# Run GPU inference (all CUDA ops happen inside the decorated function)
# Pass CPU tensors - they will be moved to GPU inside the function
model_output = run_gpu_inference(history_values_tensor, future_values_tensor, start, freq_object)
# Post-process predictions (exactly like examples/utils.py lines 65-69)
preds_full = model_output["result"].to(torch.float32)
if model is not None and hasattr(model, "scaler") and "scale_statistics" in model_output:
preds_full = model.scaler.inverse_scale(preds_full, model_output["scale_statistics"])
# Convert to numpy for plotting
preds_np = preds_full.detach().cpu().numpy()
history_np = history_values_tensor.cpu().numpy().squeeze(0)
future_np = future_values_tensor.cpu().numpy().squeeze(0)
preds_squeezed = preds_np.squeeze(0)
# Get model quantiles if available
model_quantiles = None
if model is not None and hasattr(model, "loss_type") and model.loss_type == "quantile":
model_quantiles = model.quantiles
try:
forecast_plot = plot_multivariate_timeseries(
history_values=history_np,
future_values=future_np,
predicted_values=preds_squeezed,
start=start,
frequency=freq_object,
title=f"TempoPFN Forecast - {data_source}",
show=False # Don't show the plot, we'll display in Gradio
)
except Exception as plot_error:
print(f"Warning: Failed to generate plot: {plot_error}")
# Create a simple error plot
import plotly.graph_objects as go
forecast_plot = go.Figure()
forecast_plot.add_annotation(
text="Plot generation failed",
xref="paper", yref="paper", x=0.5, y=0.5,
showarrow=False, font=dict(size=14, color="red")
)
# Calculate comprehensive metrics
metrics = calculate_metrics(
history_values=history_np,
predictions=preds_squeezed,
future_values=future_np,
data_source=data_source
)
# Store results globally for export functionality
global last_forecast_results, last_metrics_results, last_analysis_results
last_forecast_results = {
'history': history_np,
'predictions': preds_squeezed,
'future': future_np,
'start': start,
'frequency': freq_object
}
last_metrics_results = metrics
last_analysis_results = {
'data_source': data_source,
'forecast_horizon': forecast_horizon,
'history_length': history_length,
'seed': seed
}
# Create data preview DataFrame
preview_data = {
'Index': list(range(len(history_np))),
'Historical Value': history_np.flatten()[:100] # Limit to first 100 for display
}
if history_volumes is not None and not np.all(np.isnan(history_volumes)):
preview_data['Volume'] = history_volumes[:100]
data_preview_df = pd.DataFrame(preview_data)
return (
history_np, history_volumes, preds_squeezed, model_quantiles,
forecast_plot, "Forecasting completed successfully!",
metrics, data_preview_df
)
except Exception as e:
traceback.print_exc()
error_msg = f"Error during forecasting: {str(e)}"
empty_metrics = {k: 0.0 if isinstance(v, float) else "" for k, v in
calculate_metrics(np.array([0.0]), np.array([0.0])).items()}
return None, None, None, None, None, error_msg, empty_metrics, pd.DataFrame()
# --- [GRADIO UI - Simplified with Default Styling] ---
with gr.Blocks(title="TempoPFN") as app:
gr.Markdown("# TempoPFN\n### Zero-Shot Forecasting & Analysis Terminal\n*Powered by synthetic pre-training β’ Forecast anything, anywhere*")
gr.Markdown("β οΈ **First Run Note**: Initial inference may take 60-90 seconds due to Triton kernel compilation. Subsequent runs will be much faster!")
with gr.Tabs() as tabs:
# ===== FINANCIAL MARKETS TAB =====
with gr.TabItem("Financial Markets", id="financial"):
with gr.Row():
with gr.Column(scale=1, min_width=380):
# Data Source Section
gr.Markdown("### Financial Data Sources")
financial_source = gr.Radio(
choices=["Default (WTI Oil Prices)", "Stock Ticker", "VIX Volatility Index", "Upload Custom CSV"],
value="Default (WTI Oil Prices)",
label="",
info="Choose financial market data or upload your own"
)
# Combine the selections
data_source = gr.Textbox(visible=False)
# Dynamic inputs
with gr.Row():
stock_ticker = gr.Textbox(
label="Stock Ticker",
value="SPY",
placeholder="e.g., SPY, AAPL, TSLA",
visible=False
)
uploaded_file = gr.File(
label="CSV File",
file_types=[".csv"],
visible=False
)
def toggle_financial_input(choice):
show_ticker = (choice == "Stock Ticker")
show_upload = (choice == "Upload Custom CSV")
return (
gr.update(visible=show_ticker),
gr.update(visible=show_upload)
)
# Handle selection changes
financial_source.change(
fn=lambda x: x, # Just pass through the selection
inputs=financial_source,
outputs=data_source
).then(
fn=toggle_financial_input,
inputs=financial_source,
outputs=[stock_ticker, uploaded_file]
)
# Forecasting Parameters Section
gr.Markdown("### Forecasting Parameters")
forecast_horizon = gr.Slider(
minimum=30, maximum=512, value=90, step=1,
label="Forecast Horizon",
info="Number of periods to forecast ahead"
)
history_length = gr.Slider(
minimum=256, maximum=2048, value=1024, step=8,
label="History Length",
info="Historical data points to analyze"
)
financial_forecast_btn = gr.Button("Run Forecast & Analysis")
with gr.Column(scale=3):
# Status Section
gr.Markdown("### Analysis Results")
status_text = gr.Textbox(
label="",
interactive=False,
lines=3,
info="Forecasting progress and results"
)
# Key Metrics Section (Adaptive based on data source)
gr.Markdown("### Key Metrics")
# Financial metrics (shown for financial data)
with gr.Row(visible=True) as financial_metrics:
with gr.Column():
gr.Markdown("**Latest Level:** $<span id='latest-price'>0.00</span>")
latest_price_out = gr.Number(visible=False)
gr.Markdown("**Forecast (Next Period):** $<span id='forecast-next'>0.00</span>")
forecast_next_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**30-Day Volatility:** <span id='vol-30d'>0.00</span>%")
vol_30d_out = gr.Number(visible=False)
with gr.Row():
gr.Markdown("**52-Week High:** $<span id='high-52wk'>0.00</span>")
high_52wk_out = gr.Number(visible=False)
gr.Markdown("**52-Week Low:** $<span id='low-52wk'>0.00</span>")
low_52wk_out = gr.Number(visible=False)
# Comprehensive Research Metrics (shown for synthetic data)
with gr.Row(visible=False) as synthetic_metrics:
with gr.Column():
gr.Markdown("**Statistical Properties:**")
gr.Markdown("β’ **Mean:** <span id='data-mean'>0.000</span>")
data_mean_out = gr.Number(visible=False)
gr.Markdown("β’ **Std Dev:** <span id='data-std'>0.000</span>")
data_std_out = gr.Number(visible=False)
gr.Markdown("β’ **Skewness:** <span id='data-skewness'>0.000</span>")
data_skewness_out = gr.Number(visible=False)
gr.Markdown("β’ **Kurtosis:** <span id='data-kurtosis'>0.000</span>")
data_kurtosis_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Time Series Analysis:**")
gr.Markdown("β’ **Autocorr (lag-1):** <span id='data-autocorr'>0.000</span>")
data_autocorr_out = gr.Number(visible=False)
gr.Markdown("β’ **Stationary:** <span id='data-stationary'>Unknown</span>")
data_stationary_out = gr.Textbox(visible=False)
gr.Markdown("β’ **Pattern Type:** <span id='pattern-type'>None</span>")
pattern_type_out = gr.Textbox(visible=False)
# Model Performance Metrics
with gr.Row(visible=False) as performance_metrics:
with gr.Column():
gr.Markdown("**Forecast Performance:**")
gr.Markdown("β’ **MSE:** <span id='mse'>0.000</span>")
mse_out = gr.Number(visible=False)
gr.Markdown("β’ **MAE:** <span id='mae'>0.000</span>")
mae_out = gr.Number(visible=False)
gr.Markdown("β’ **MAPE:** <span id='mape'>0.000</span>%")
mape_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Uncertainty Quantification:**")
gr.Markdown("β’ **80% Coverage:** <span id='coverage-80'>0.000</span>")
coverage_80_out = gr.Number(visible=False)
gr.Markdown("β’ **95% Coverage:** <span id='coverage-95'>0.000</span>")
coverage_95_out = gr.Number(visible=False)
gr.Markdown("β’ **Calibration:** <span id='calibration'>0.000</span>")
calibration_out = gr.Number(visible=False)
# Data Complexity Metrics
with gr.Row(visible=False) as complexity_metrics:
with gr.Column():
gr.Markdown("**Information Theory:**")
gr.Markdown("β’ **Sample Entropy:** <span id='sample-entropy'>0.000</span>")
sample_entropy_out = gr.Number(visible=False)
gr.Markdown("β’ **Approx Entropy:** <span id='approx-entropy'>0.000</span>")
approx_entropy_out = gr.Number(visible=False)
gr.Markdown("β’ **Perm Entropy:** <span id='perm-entropy'>0.000</span>")
perm_entropy_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Complexity Measures:**")
gr.Markdown("β’ **Fractal Dim:** <span id='fractal-dim'>0.000</span>")
fractal_dim_out = gr.Number(visible=False)
gr.Markdown("β’ **Dominant Freq:** <span id='dominant-freq'>0.000</span>")
dominant_freq_out = gr.Number(visible=False)
gr.Markdown("β’ **Spectral Centroid:** <span id='spectral-centroid'>0.000</span>")
spectral_centroid_out = gr.Number(visible=False)
gr.Markdown("β’ **Spectral Entropy:** <span id='spectral-entropy'>0.000</span>")
spectral_entropy_out = gr.Number(visible=False)
# Research Tools Section
with gr.Row(visible=False) as research_tools:
with gr.Column():
gr.Markdown("**Cross-Validation Results:**")
gr.Markdown("β’ **Rolling Window MSE:** <span id='cv-mse'>0.000</span>")
cv_mse_out = gr.Number(visible=False)
gr.Markdown("β’ **Rolling Window MAE:** <span id='cv-mae'>0.000</span>")
cv_mae_out = gr.Number(visible=False)
gr.Markdown("β’ **Validation Windows:** <span id='cv-windows'>0</span>")
cv_windows_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Parameter Sensitivity:**")
gr.Markdown("β’ **Horizon Sensitivity:** <span id='horizon-sensitivity'>0.000</span>")
horizon_sensitivity_out = gr.Number(visible=False)
gr.Markdown("β’ **History Sensitivity:** <span id='history-sensitivity'>0.000</span>")
history_sensitivity_out = gr.Number(visible=False)
gr.Markdown("β’ **Stability Score:** <span id='stability-score'>0.000</span>")
stability_score_out = gr.Number(visible=False)
# Forecast Visualization Section
gr.Markdown("### Forecast & Technical Analysis")
plot_output = gr.Plot(
label="",
show_label=False
)
# Advanced Visualizations Section
with gr.Accordion("Advanced Statistical Visualizations", open=False):
advanced_plots = gr.Plot(label="", show_label=False)
# Export & Analysis Tools Section
with gr.Accordion("Export & Analysis Tools", open=False):
with gr.Row():
export_forecast_csv = gr.Button("π Export Forecast Data (CSV)")
export_metrics_csv = gr.Button("π Export Metrics Summary (CSV)")
export_analysis_csv = gr.Button("π¬ Export Full Analysis (CSV)")
export_status = gr.Textbox(
label="Export Status",
interactive=False,
lines=2,
info="Export operation results"
)
export_file = gr.File(
label="Download Exported Data",
visible=False
)
# Data Preview Section
with gr.Accordion("Raw Data Preview", open=False):
data_preview = gr.Dataframe(
label="",
show_label=False,
wrap=True
)
# ===== RESEARCH & ANALYSIS TAB =====
with gr.TabItem("Research & Analysis", id="research"):
with gr.Row():
with gr.Column(scale=1, min_width=380):
# Data Source Section
gr.Markdown("### Synthetic Data Testing")
research_source = gr.Radio(
choices=["Basic Synthetic", "Advanced Synthetic"],
value="Basic Synthetic",
label="",
info="Test TempoPFN with synthetic data patterns"
)
# Dynamic inputs for research tab
seed = gr.Number(
value=42,
label="Random Seed",
minimum=0,
maximum=9999,
step=1,
visible=False
)
# Build available generator choices
available_generators = [
"Sine Waves", "Sawtooth Waves", "Spikes", "Steps",
"Ornstein-Uhlenbeck", "Anomaly Patterns"
]
if GP_AVAILABLE:
available_generators.append("Gaussian Processes")
if AUDIO_AVAILABLE:
available_generators.extend(["Financial Volatility", "Fractal Patterns"])
if NETWORK_AVAILABLE:
available_generators.append("Network Topology")
if RHYTHM_AVAILABLE:
available_generators.append("Stochastic Rhythm")
if CAUKER_AVAILABLE:
available_generators.append("CauKer")
if FORECAST_PFN_AVAILABLE:
available_generators.append("Forecast PFN Prior")
if KERNEL_AVAILABLE:
available_generators.append("Kernel Synth")
# Synthetic Playground controls
with gr.Row():
synth_generator = gr.Dropdown(
choices=available_generators,
value="Sine Waves",
label="Generator Type",
visible=False,
info="Select synthetic pattern generator"
)
synth_complexity = gr.Slider(
minimum=1, maximum=10, value=5, step=1,
label="Complexity",
visible=False,
info="Pattern complexity level"
)
def toggle_research_input(choice):
show_seed = (choice == "Basic Synthetic")
show_synth = (choice == "Advanced Synthetic")
return (
gr.update(visible=show_seed),
gr.update(visible=show_synth),
gr.update(visible=show_synth)
)
# Handle selection changes
research_source.change(
fn=lambda x: x, # Just pass through the selection
inputs=research_source,
outputs=data_source
).then(
fn=toggle_research_input,
inputs=research_source,
outputs=[seed, synth_generator, synth_complexity]
)
# Forecasting Parameters Section
gr.Markdown("### Forecasting Parameters")
forecast_horizon = gr.Slider(
minimum=30, maximum=512, value=90, step=1,
label="Forecast Horizon",
info="Number of periods to forecast ahead"
)
history_length = gr.Slider(
minimum=256, maximum=2048, value=1024, step=8,
label="History Length",
info="Historical data points to analyze"
)
forecast_btn = gr.Button("Run Forecast & Analysis")
with gr.Column(scale=3):
# Status Section
gr.Markdown("### Analysis Results")
research_status_text = gr.Textbox(
label="",
interactive=False,
lines=3,
info="Forecasting progress and results"
)
# Key Metrics Section (Adaptive based on data source)
gr.Markdown("### Key Metrics")
# Financial metrics (shown for financial data)
with gr.Row(visible=True) as financial_metrics:
with gr.Column():
gr.Markdown("**Latest Level:** $<span id='latest-price'>0.00</span>")
latest_price_out = gr.Number(visible=False)
gr.Markdown("**Forecast (Next Period):** $<span id='forecast-next'>0.00</span>")
forecast_next_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**30-Day Volatility:** <span id='vol-30d'>0.00</span>%")
vol_30d_out = gr.Number(visible=False)
with gr.Row():
gr.Markdown("**52-Week High:** $<span id='high-52wk'>0.00</span>")
high_52wk_out = gr.Number(visible=False)
gr.Markdown("**52-Week Low:** $<span id='low-52wk'>0.00</span>")
low_52wk_out = gr.Number(visible=False)
# Synthetic/Research metrics (shown for synthetic data)
with gr.Row(visible=False) as synthetic_metrics:
with gr.Column():
gr.Markdown("**Data Mean:** <span id='data-mean'>0.000</span>")
data_mean_out = gr.Number(visible=False)
gr.Markdown("**Data Std Dev:** <span id='data-std'>0.000</span>")
data_std_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Forecast Horizon:** <span id='forecast-horizon'>0</span>")
forecast_accuracy_out = gr.Number(visible=False)
gr.Markdown("**Pattern Type:** <span id='pattern-type'>None</span>")
pattern_type_out = gr.Textbox(visible=False)
# Model Performance Metrics
with gr.Row(visible=False) as performance_metrics:
with gr.Column():
gr.Markdown("**Forecast Performance:**")
gr.Markdown("β’ **MSE:** <span id='mse'>0.000</span>")
mse_out = gr.Number(visible=False)
gr.Markdown("β’ **MAE:** <span id='mae'>0.000</span>")
mae_out = gr.Number(visible=False)
gr.Markdown("β’ **MAPE:** <span id='mape'>0.000</span>%")
mape_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Uncertainty Quantification:**")
gr.Markdown("β’ **80% Coverage:** <span id='coverage-80'>0.000</span>")
coverage_80_out = gr.Number(visible=False)
gr.Markdown("β’ **95% Coverage:** <span id='coverage-95'>0.000</span>")
coverage_95_out = gr.Number(visible=False)
gr.Markdown("β’ **Calibration:** <span id='calibration'>0.000</span>")
calibration_out = gr.Number(visible=False)
# Data Complexity Metrics
with gr.Row(visible=False) as complexity_metrics:
with gr.Column():
gr.Markdown("**Information Theory:**")
gr.Markdown("β’ **Sample Entropy:** <span id='sample-entropy'>0.000</span>")
sample_entropy_out = gr.Number(visible=False)
gr.Markdown("β’ **Approx Entropy:** <span id='approx-entropy'>0.000</span>")
approx_entropy_out = gr.Number(visible=False)
gr.Markdown("β’ **Perm Entropy:** <span id='perm-entropy'>0.000</span>")
perm_entropy_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Complexity Measures:**")
gr.Markdown("β’ **Fractal Dim:** <span id='fractal-dim'>0.000</span>")
fractal_dim_out = gr.Number(visible=False)
gr.Markdown("β’ **Dominant Freq:** <span id='dominant-freq'>0.000</span>")
dominant_freq_out = gr.Number(visible=False)
gr.Markdown("β’ **Spectral Centroid:** <span id='spectral-centroid'>0.000</span>")
spectral_centroid_out = gr.Number(visible=False)
gr.Markdown("β’ **Spectral Entropy:** <span id='spectral-entropy'>0.000</span>")
spectral_entropy_out = gr.Number(visible=False)
# Research Tools Section
with gr.Row(visible=False) as research_tools:
with gr.Column():
gr.Markdown("**Cross-Validation Results:**")
gr.Markdown("β’ **Rolling Window MSE:** <span id='cv-mse'>0.000</span>")
cv_mse_out = gr.Number(visible=False)
gr.Markdown("β’ **Rolling Window MAE:** <span id='cv-mae'>0.000</span>")
cv_mae_out = gr.Number(visible=False)
gr.Markdown("β’ **Validation Windows:** <span id='cv-windows'>0</span>")
cv_windows_out = gr.Number(visible=False)
with gr.Column():
gr.Markdown("**Parameter Sensitivity:**")
gr.Markdown("β’ **Horizon Sensitivity:** <span id='horizon-sensitivity'>0.000</span>")
horizon_sensitivity_out = gr.Number(visible=False)
gr.Markdown("β’ **History Sensitivity:** <span id='history-sensitivity'>0.000</span>")
history_sensitivity_out = gr.Number(visible=False)
gr.Markdown("β’ **Stability Score:** <span id='stability-score'>0.000</span>")
stability_score_out = gr.Number(visible=False)
# Forecast Visualization Section
gr.Markdown("### Forecast & Technical Analysis")
research_plot_output = gr.Plot(
label="",
show_label=False
)
# Advanced Visualizations Section (Research tab doesn't have this defined, so add it)
with gr.Accordion("Advanced Statistical Visualizations", open=False):
research_advanced_plots = gr.Plot(label="", show_label=False)
# Data Preview Section
with gr.Accordion("Raw Data Preview", open=False):
research_data_preview = gr.Dataframe(
label="",
show_label=False,
wrap=True
)
# Now add the metrics toggle function after components are defined
def toggle_metrics_display(choice):
"""Toggle between financial and synthetic metrics based on data source"""
show_financial = choice in ["Stock Ticker", "Default (WTI Oil Prices)", "VIX Volatility Index"]
show_synthetic = choice in ["Basic Synthetic", "Advanced Synthetic", "Upload Custom CSV"]
show_performance = show_synthetic # Show performance metrics for synthetic data
show_complexity = show_synthetic # Show complexity metrics for synthetic data
return (
gr.update(visible=show_financial),
gr.update(visible=show_synthetic),
gr.update(visible=show_performance),
gr.update(visible=show_complexity)
)
# Add the metrics toggle to the selection change handlers
financial_source.change(
fn=toggle_metrics_display,
inputs=data_source,
outputs=[financial_metrics, synthetic_metrics, performance_metrics, complexity_metrics]
)
research_source.change(
fn=toggle_metrics_display,
inputs=data_source,
outputs=[financial_metrics, synthetic_metrics, performance_metrics, complexity_metrics]
)
# Wrapper function to unpack forecast results for UI
def forecast_and_display_financial(data_source, stock_ticker, uploaded_file, forecast_horizon, history_length, seed):
result = forecast_time_series(data_source, stock_ticker, uploaded_file, forecast_horizon, history_length, seed, "Sine Waves", 5)
if result[5] and "Error" not in result[5]: # Check status
history_np = result[0]
preds = result[2]
future_np = last_forecast_results['future'] if last_forecast_results else None
# Generate advanced visualizations
adv_viz = create_advanced_visualizations(history_np, preds, future_np)
return (
result[5], # status_text
result[4], # plot_output
result[7], # data_preview
adv_viz # advanced_plots
)
else:
return result[5], None, pd.DataFrame(), go.Figure()
def forecast_and_display_research(data_source, forecast_horizon, history_length, seed, synth_generator, synth_complexity):
result = forecast_time_series(data_source, "", None, forecast_horizon, history_length, seed, synth_generator, synth_complexity)
if result[5] and "Error" not in result[5]:
history_np = result[0]
preds = result[2]
future_np = last_forecast_results['future'] if last_forecast_results else None
# Generate advanced visualizations
adv_viz = create_advanced_visualizations(history_np, preds, future_np)
return (
result[5], # status_text
result[4], # plot_output
result[7], # data_preview
adv_viz # advanced_plots
)
else:
return result[5], None, pd.DataFrame(), go.Figure()
# Connect button click handlers
financial_forecast_btn.click(
fn=forecast_and_display_financial,
inputs=[data_source, stock_ticker, uploaded_file, forecast_horizon, history_length, seed],
outputs=[status_text, plot_output, data_preview, advanced_plots]
)
forecast_btn.click(
fn=forecast_and_display_research,
inputs=[data_source, forecast_horizon, history_length, seed, synth_generator, synth_complexity],
outputs=[research_status_text, research_plot_output, research_data_preview, research_advanced_plots]
)
# Wrapper for export functions to show file
def export_forecast_wrapper():
file, status = export_forecast_csv()
return gr.update(value=file, visible=file is not None), status
def export_metrics_wrapper():
file, status = export_metrics_csv()
return gr.update(value=file, visible=file is not None), status
def export_analysis_wrapper():
file, status = export_analysis_csv()
return gr.update(value=file, visible=file is not None), status
# Connect export button handlers
export_forecast_csv.click(
fn=export_forecast_wrapper,
inputs=[],
outputs=[export_file, export_status]
)
export_metrics_csv.click(
fn=export_metrics_wrapper,
inputs=[],
outputs=[export_file, export_status]
)
export_analysis_csv.click(
fn=export_analysis_wrapper,
inputs=[],
outputs=[export_file, export_status]
)
return app # Return the Gradio app object
# --- GRADIO APP LAUNCH ---
app = create_gradio_app()
app.launch()
|