# model.py import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) # (1, 28, 28) -> (32, 26, 26) self.pool1 = nn.MaxPool2d(2, 2) # (32, 26, 26) -> (32, 13, 13) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # (32, 13, 13) -> (64, 11, 11) self.pool2 = nn.MaxPool2d(2, 2) # (64, 11, 11) -> (64, 5, 5) self.fc1 = nn.Linear(64 * 5 * 5, 64) self.fc2 = nn.Linear(64, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 64 * 5 * 5) x = F.relu(self.fc1(x)) x = self.fc2(x) return x