Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from model import CNN
|
| 7 |
+
|
| 8 |
+
# Load model
|
| 9 |
+
model = CNN()
|
| 10 |
+
model.load_state_dict(torch.load("pytorch_model.bin", map_location="cpu"))
|
| 11 |
+
model.eval()
|
| 12 |
+
|
| 13 |
+
# Prediction function
|
| 14 |
+
def predict_digit(image):
|
| 15 |
+
if image is None:
|
| 16 |
+
return "No image"
|
| 17 |
+
image = Image.fromarray(image).convert("L").resize((28, 28))
|
| 18 |
+
image = np.array(image) / 255.0
|
| 19 |
+
image = torch.tensor(image).unsqueeze(0).unsqueeze(0).float()
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
output = model(image)
|
| 22 |
+
probabilities = F.softmax(output, dim=1).numpy().flatten()
|
| 23 |
+
return {str(i): float(probabilities[i]) for i in range(10)}
|
| 24 |
+
|
| 25 |
+
# Interface (no 'tool', 'type', or other unsupported args)
|
| 26 |
+
gr.Interface(
|
| 27 |
+
fn=predict_digit,
|
| 28 |
+
inputs=gr.Image(label="Upload a digit image"),
|
| 29 |
+
outputs=gr.Label(num_top_classes=3),
|
| 30 |
+
title="Digit Classifier",
|
| 31 |
+
description="Upload a 28x28 grayscale image of a handwritten digit (0–9)."
|
| 32 |
+
).launch()
|