Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import streamlit.components.v1 as components | |
| import os | |
| import base64 | |
| import glob | |
| import io | |
| import json | |
| import mistune | |
| import pytz | |
| import math | |
| import requests | |
| import sys | |
| import time | |
| import re | |
| import textract | |
| import zipfile | |
| import random | |
| import httpx # add 11/13/23 | |
| import asyncio | |
| from openai import OpenAI | |
| #from openai import AsyncOpenAI | |
| from datetime import datetime | |
| from xml.etree import ElementTree as ET | |
| from bs4 import BeautifulSoup | |
| from collections import deque | |
| from audio_recorder_streamlit import audio_recorder | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from templates import css, bot_template, user_template | |
| from io import BytesIO | |
| from contextlib import redirect_stdout | |
| # set page config once | |
| st.set_page_config(page_title="Python AI Pair Programmer", layout="wide") | |
| # UI for sidebar controls | |
| should_save = st.sidebar.checkbox("πΎ Save", value=True) | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| with st.expander("Settings π§ πΎ", expanded=True): | |
| # File type for output, model choice | |
| menu = ["txt", "htm", "xlsx", "csv", "md", "py"] | |
| choice = st.sidebar.selectbox("Output File Type:", menu) | |
| model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) | |
| # Define a context dictionary to maintain the state between exec calls | |
| context = {} | |
| def create_file(filename, prompt, response, should_save=True): | |
| if not should_save: | |
| return | |
| # Extract base filename without extension | |
| base_filename, ext = os.path.splitext(filename) | |
| # Initialize the combined content | |
| combined_content = "" | |
| # Add Prompt with markdown title and emoji | |
| combined_content += "# Prompt π\n" + prompt + "\n\n" | |
| # Add Response with markdown title and emoji | |
| combined_content += "# Response π¬\n" + response + "\n\n" | |
| # Check for code blocks in the response | |
| resources = re.findall(r"```([\s\S]*?)```", response) | |
| for resource in resources: | |
| # Check if the resource contains Python code | |
| if "python" in resource.lower(): | |
| # Remove the 'python' keyword from the code block | |
| cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE) | |
| # Add Code Results title with markdown and emoji | |
| combined_content += "# Code Results π\n" | |
| # Redirect standard output to capture it | |
| original_stdout = sys.stdout | |
| sys.stdout = io.StringIO() | |
| # Execute the cleaned Python code within the context | |
| try: | |
| exec(cleaned_code, context) | |
| code_output = sys.stdout.getvalue() | |
| combined_content += f"```\n{code_output}\n```\n\n" | |
| realtimeEvalResponse = "# Code Results π\n" + "```" + code_output + "```\n\n" | |
| st.code(realtimeEvalResponse) | |
| except Exception as e: | |
| combined_content += f"```python\nError executing Python code: {e}\n```\n\n" | |
| # Restore the original standard output | |
| sys.stdout = original_stdout | |
| else: | |
| # Add non-Python resources with markdown and emoji | |
| combined_content += "# Resource π οΈ\n" + "```" + resource + "```\n\n" | |
| # Save the combined content to a Markdown file | |
| if should_save: | |
| with open(f"{base_filename}.md", 'w') as file: | |
| file.write(combined_content) | |
| st.code(combined_content) | |
| # Create a Base64 encoded link for the file | |
| with open(f"{base_filename}.md", 'rb') as file: | |
| encoded_file = base64.b64encode(file.read()).decode() | |
| href = f'<a href="data:file/markdown;base64,{encoded_file}" download="{filename}">Download File π</a>' | |
| st.markdown(href, unsafe_allow_html=True) | |
| # Read it aloud | |
| def readitaloud(result): | |
| documentHTML5=''' | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>Read It Aloud</title> | |
| <script type="text/javascript"> | |
| function readAloud() { | |
| const text = document.getElementById("textArea").value; | |
| const speech = new SpeechSynthesisUtterance(text); | |
| window.speechSynthesis.speak(speech); | |
| } | |
| </script> | |
| </head> | |
| <body> | |
| <h1>π Read It Aloud</h1> | |
| <textarea id="textArea" rows="10" cols="80"> | |
| ''' | |
| documentHTML5 = documentHTML5 + result | |
| documentHTML5 = documentHTML5 + ''' | |
| </textarea> | |
| <br> | |
| <button onclick="readAloud()">π Read Aloud</button> | |
| </body> | |
| </html> | |
| ''' | |
| components.html(documentHTML5, width=800, height=300) | |
| #return result | |
| def generate_filename(prompt, file_type): | |
| central = pytz.timezone('US/Central') | |
| safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
| replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
| safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
| return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
| # Chat and Chat with files | |
| def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'): | |
| model = model_choice | |
| conversation = [{'role': 'system', 'content': 'You are a python script writer.'}] | |
| conversation.append({'role': 'user', 'content': prompt}) | |
| if len(document_section)>0: | |
| conversation.append({'role': 'assistant', 'content': document_section}) | |
| start_time = time.time() | |
| report = [] | |
| res_box = st.empty() | |
| collected_chunks = [] | |
| collected_messages = [] | |
| key = os.getenv('OPENAI_API_KEY') | |
| client = OpenAI( | |
| api_key= os.getenv('OPENAI_API_KEY') | |
| ) | |
| stream = client.chat.completions.create( | |
| model='gpt-3.5-turbo', | |
| messages=conversation, | |
| stream=True, | |
| ) | |
| all_content = "" # Initialize an empty string to hold all content | |
| for part in stream: | |
| chunk_message = (part.choices[0].delta.content or "") | |
| collected_messages.append(chunk_message) # save the message | |
| content=part.choices[0].delta.content | |
| try: | |
| if len(content) > 0: | |
| report.append(content) | |
| all_content += content | |
| result = "".join(report).strip() | |
| res_box.markdown(f'*{result}*') | |
| except: | |
| st.write(' ') | |
| full_reply_content = all_content | |
| st.write("Elapsed time:") | |
| st.write(time.time() - start_time) | |
| filename = generate_filename(full_reply_content, choice) | |
| create_file(filename, prompt, full_reply_content, should_save) | |
| readitaloud(full_reply_content) | |
| return full_reply_content | |
| def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): | |
| conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
| conversation.append({'role': 'user', 'content': prompt}) | |
| if len(file_content)>0: | |
| conversation.append({'role': 'assistant', 'content': file_content}) | |
| client = OpenAI( | |
| api_key= os.getenv('OPENAI_API_KEY') | |
| ) | |
| response = client.chat.completions.create(model=model_choice, messages=conversation) | |
| return response['choices'][0]['message']['content'] | |
| def link_button_with_emoji(url, title, emoji_summary): | |
| emojis = ["π", "π₯", "π‘οΈ", "π©Ί", "π¬", "π", "π§ͺ", "π¨ββοΈ", "π©ββοΈ"] | |
| random_emoji = random.choice(emojis) | |
| st.markdown(f"[{random_emoji} {emoji_summary} - {title}]({url})") | |
| python_parts = { | |
| "Syntax": {"emoji": "βοΈ", "details": "Variables, Comments, Printing"}, | |
| "Data Types": {"emoji": "π", "details": "Numbers, Strings, Lists, Tuples, Sets, Dictionaries"}, | |
| "Control Structures": {"emoji": "π", "details": "If, Elif, Else, Loops, Break, Continue"}, | |
| "Functions": {"emoji": "π§", "details": "Defining, Calling, Parameters, Return Values"}, | |
| "Classes": {"emoji": "ποΈ", "details": "Creating, Inheritance, Methods, Properties"}, | |
| "API Interaction": {"emoji": "π", "details": "Requests, JSON Parsing, HTTP Methods"}, | |
| "Data Visualization Libraries1": {"emoji": "π", "details": "matplotlib"}, | |
| "Data Visualization Libraries2": {"emoji": "π", "details": "seaborn"}, | |
| "Data Visualization Libraries3": {"emoji": "π", "details": "plotly"}, | |
| "Data Visualization Libraries4": {"emoji": "π", "details": "altair"}, | |
| "Data Visualization Libraries5": {"emoji": "π", "details": "bokeh"}, | |
| "Data Visualization Libraries6": {"emoji": "π", "details": "pydeck"}, | |
| "Data Visualization Libraries7": {"emoji": "π", "details": "holoviews"}, | |
| "Data Visualization Libraries8": {"emoji": "π", "details": "plotnine"}, | |
| "Data Visualization Libraries9": {"emoji": "π", "details": "graphviz"}, | |
| "Error Handling": {"emoji": "β οΈ", "details": "Try, Except, Finally, Raising"}, | |
| "Scientific & Data Analysis Libraries": {"emoji": "π§ͺ", "details": "Numpy, Pandas, Scikit-Learn, TensorFlow, SciPy, Pillow"}, | |
| "Advanced Concepts": {"emoji": "π§ ", "details": "Decorators, Generators, Context Managers, Metaclasses, Asynchronous Programming"}, | |
| "Web & Network Libraries": {"emoji": "πΈοΈ", "details": "Flask, Django, Requests, BeautifulSoup, HTTPX, Asyncio"}, | |
| "Streamlit & Extensions1": {"emoji": "π‘", "details": "Streamlit"}, | |
| "Streamlit & Extensions2": {"emoji": "π‘", "details": "Streamlit-AgGrid"}, | |
| "Streamlit & Extensions3": {"emoji": "π‘", "details": "Streamlit-Folium"}, | |
| "Streamlit & Extensions4": {"emoji": "π‘", "details": "Streamlit-Pandas-Profiling"}, | |
| "Streamlit & Extensions5": {"emoji": "π‘", "details": "Streamlit-Vega-Lite, Gradio"}, | |
| "Gradio": {"emoji": "π‘", "details": "gradio"}, | |
| "File Handling & Serialization": {"emoji": "π", "details": "PyPDF2, Pytz, Json, Base64, Zipfile, Random, Glob, IO"}, | |
| "Machine Learning & AI": {"emoji": "π€", "details": "OpenAI, LangChain, HuggingFace"}, | |
| "Text & Data Extraction": {"emoji": "π", "details": "TikToken, Textract, SQLAlchemy, Pillow"}, | |
| "XML & Collections Libraries": {"emoji": "π", "details": "XML, Collections"}, | |
| "Top PyPI Libraries1": {"emoji": "π", "details": "Requests, Pillow, SQLAlchemy, Flask, Django, SciPy, Beautiful Soup, PyTest, PyGame, Twisted"}, | |
| "Top PyPI Libraries2": {"emoji": "π", "details": "numpy, pandas, matplotlib, requests, beautifulsoup4"}, | |
| "Top PyPI Libraries3": {"emoji": "π", "details": "langchain, openai, PyPDF2, pytz"}, | |
| "Top PyPI Libraries4": {"emoji": "π", "details": "streamlit, audio_recorder_streamlit, gradio"}, | |
| "Top PyPI Libraries5": {"emoji": "π", "details": "tiktoken, textract, glob, io"}, | |
| "Top PyPI Libraries6": {"emoji": "π", "details": "matplotlib, seaborn, plotly, altair, bokeh, pydeck"}, | |
| "Top PyPI Libraries7": {"emoji": "π", "details": "streamlit, streamlit-aggrid, streamlit-folium, streamlit-pandas-profiling, streamlit-vega-lite"}, | |
| "Top PyPI Libraries8": {"emoji": "π", "details": "holoviews, plotnine, graphviz"}, | |
| "Top PyPI Libraries9": {"emoji": "π", "details": "json, base64, zipfile, random"}, | |
| "Top PyPI Libraries10": {"emoji": "π", "details": "httpx, asyncio, xml, collections, huggingface "} | |
| } | |
| response_placeholders = {} | |
| example_placeholders = {} | |
| def display_python_parts_old2(): | |
| st.title("Python Interactive Learning Platform") | |
| for part, content in python_parts.items(): | |
| with st.expander(f"{content['emoji']} {part} - {content['details']}", expanded=False): | |
| if st.button(f"Show Example for {part}", key=f"example_{part}"): | |
| example = "Write short python script examples with mock data in python list dictionary for inputs for " + part | |
| example_placeholders[part] = example | |
| st.code(example_placeholders[part], language="python") | |
| response = chat_with_model(f'Write python script with short code examples for: {content["details"]}', part) | |
| response_placeholders[part] = response | |
| st.write(f"#### {content['emoji']} {part} Example") | |
| st.code(response_placeholders[part], language="python") | |
| if st.button(f"Take Quiz on {part}", key=f"quiz_{part}"): | |
| quiz = "Write Python script quiz examples with mock static data inputs for " + part | |
| response = chat_with_model(f'Write python code blocks for quiz program: {quiz}', part) | |
| response_placeholders[part] = response | |
| st.write(f"#### {content['emoji']} {part} Quiz") | |
| st.code(response_placeholders[part], language="python") | |
| prompt = f"Write python script with a few advanced coding examples using mock data input for {content['details']}" | |
| if st.button(f"Explore {part}", key=part): | |
| response = chat_with_model(prompt, part) | |
| response_placeholders[part] = response | |
| st.write(f"#### {content['emoji']} {part} Details") | |
| st.code(response_placeholders[part], language="python") | |
| def display_python_parts(): | |
| st.title("Python Interactive Learning Platform") | |
| for part, content in python_parts.items(): | |
| with st.expander(f"{content['emoji']} {part} - {content['details']}", expanded=False): | |
| if st.button(f"Show Example for {part}", key=f"example_{part}"): | |
| example = "Python script example with mock example inputs for " + part | |
| example_placeholders[part] = example | |
| st.code(example_placeholders[part], language="python") | |
| response = chat_with_model('Create detailed advanced python script code examples for:' + example_placeholders[part], part) | |
| if st.button(f"Take Quiz on {part}", key=f"quiz_{part}"): | |
| quiz = "Python script quiz example with mock example inputs for " + part | |
| response = chat_with_model(quiz, part) | |
| prompt = f"Learn about advanced coding examples using mock example inputs for {content['details']}" | |
| if st.button(f"Explore {part}", key=part): | |
| response = chat_with_model(prompt, part) | |
| response_placeholders[part] = response | |
| if part in response_placeholders: | |
| st.markdown(f"**Response:** {response_placeholders[part]}") | |
| def add_paper_buttons_and_links(): | |
| page = st.sidebar.radio("Choose a page:", ["Python Pair Programmer"]) | |
| if page == "Python Pair Programmer": | |
| display_python_parts() | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| with st.expander("MemGPT π§ πΎ", expanded=False): | |
| link_button_with_emoji("https://arxiv.org/abs/2310.08560", "MemGPT", "π§ πΎ Memory OS") | |
| outline_memgpt = "Memory Hierarchy, Context Paging, Self-directed Memory Updates, Memory Editing, Memory Retrieval, Preprompt Instructions, Semantic Memory, Episodic Memory, Emotional Contextual Understanding" | |
| if st.button("Discuss MemGPT Features"): | |
| chat_with_model("Discuss the key features of MemGPT: " + outline_memgpt, "MemGPT") | |
| with col2: | |
| with st.expander("AutoGen π€π", expanded=False): | |
| link_button_with_emoji("https://arxiv.org/abs/2308.08155", "AutoGen", "π€π Multi-Agent LLM") | |
| outline_autogen = "Cooperative Conversations, Combining Capabilities, Complex Task Solving, Divergent Thinking, Factuality, Highly Capable Agents, Generic Abstraction, Effective Implementation" | |
| if st.button("Explore AutoGen Multi-Agent LLM"): | |
| chat_with_model("Explore the key features of AutoGen: " + outline_autogen, "AutoGen") | |
| with col3: | |
| with st.expander("Whisper ππ§βπ", expanded=False): | |
| link_button_with_emoji("https://arxiv.org/abs/2212.04356", "Whisper", "ππ§βπ Robust STT") | |
| outline_whisper = "Scaling, Deep Learning Approaches, Weak Supervision, Zero-shot Transfer Learning, Accuracy & Robustness, Pre-training Techniques, Broad Range of Environments, Combining Multiple Datasets" | |
| if st.button("Learn About Whisper STT"): | |
| chat_with_model("Learn about the key features of Whisper: " + outline_whisper, "Whisper") | |
| with col4: | |
| with st.expander("ChatDev π¬π»", expanded=False): | |
| link_button_with_emoji("https://arxiv.org/pdf/2307.07924.pdf", "ChatDev", "π¬π» Comm. Agents") | |
| outline_chatdev = "Effective Communication, Comprehensive Software Solutions, Diverse Social Identities, Tailored Codes, Environment Dependencies, User Manuals" | |
| if st.button("Deep Dive into ChatDev"): | |
| chat_with_model("Deep dive into the features of ChatDev: " + outline_chatdev, "ChatDev") | |
| add_paper_buttons_and_links() | |
| # Process user input is a post processor algorithm which runs after document embedding vector DB play of GPT on context of documents.. | |
| def process_user_input(user_question): | |
| # Check and initialize 'conversation' in session state if not present | |
| if 'conversation' not in st.session_state: | |
| st.session_state.conversation = {} # Initialize with an empty dictionary or an appropriate default value | |
| response = st.session_state.conversation({'question': user_question}) | |
| st.session_state.chat_history = response['chat_history'] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| template = user_template if i % 2 == 0 else bot_template | |
| st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
| # Save file output from PDF query results | |
| filename = generate_filename(user_question, 'txt') | |
| create_file(filename, user_question, message.content, should_save) | |
| # New functionality to create expanders and buttons | |
| create_expanders_and_buttons(message.content) | |
| def create_expanders_and_buttons(content): | |
| # Split the content into paragraphs | |
| paragraphs = content.split("\n\n") | |
| for paragraph in paragraphs: | |
| # Identify the header and detail in the paragraph | |
| header, detail = extract_feature_and_detail(paragraph) | |
| if header and detail: | |
| with st.expander(header, expanded=False): | |
| if st.button(f"Explore {header}"): | |
| expanded_outline = "Expand on the feature: " + detail | |
| chat_with_model(expanded_outline, header) | |
| def extract_feature_and_detail(paragraph): | |
| # Use regex to find the header and detail in the paragraph | |
| match = re.match(r"(.*?):(.*)", paragraph) | |
| if match: | |
| header = match.group(1).strip() | |
| detail = match.group(2).strip() | |
| return header, detail | |
| return None, None | |
| def transcribe_audio(file_path, model): | |
| key = os.getenv('OPENAI_API_KEY') | |
| headers = { | |
| "Authorization": f"Bearer {key}", | |
| } | |
| with open(file_path, 'rb') as f: | |
| data = {'file': f} | |
| st.write("Read file {file_path}", file_path) | |
| OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" | |
| response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) | |
| if response.status_code == 200: | |
| st.write(response.json()) | |
| chatResponse = chat_with_model(response.json().get('text'), '') # ************************************* | |
| transcript = response.json().get('text') | |
| #st.write('Responses:') | |
| #st.write(chatResponse) | |
| filename = generate_filename(transcript, 'txt') | |
| #create_file(filename, transcript, chatResponse) | |
| response = chatResponse | |
| user_prompt = transcript | |
| create_file(filename, user_prompt, response, should_save) | |
| return transcript | |
| else: | |
| st.write(response.json()) | |
| st.error("Error in API call.") | |
| return None | |
| def save_and_play_audio(audio_recorder): | |
| audio_bytes = audio_recorder() | |
| if audio_bytes: | |
| filename = generate_filename("Recording", "wav") | |
| with open(filename, 'wb') as f: | |
| f.write(audio_bytes) | |
| st.audio(audio_bytes, format="audio/wav") | |
| return filename | |
| return None | |
| def truncate_document(document, length): | |
| return document[:length] | |
| def divide_document(document, max_length): | |
| return [document[i:i+max_length] for i in range(0, len(document), max_length)] | |
| def get_table_download_link(file_path): | |
| with open(file_path, 'r') as file: | |
| try: | |
| data = file.read() | |
| except: | |
| st.write('') | |
| return file_path | |
| b64 = base64.b64encode(data.encode()).decode() | |
| file_name = os.path.basename(file_path) | |
| ext = os.path.splitext(file_name)[1] # get the file extension | |
| if ext == '.txt': | |
| mime_type = 'text/plain' | |
| elif ext == '.py': | |
| mime_type = 'text/plain' | |
| elif ext == '.xlsx': | |
| mime_type = 'text/plain' | |
| elif ext == '.csv': | |
| mime_type = 'text/plain' | |
| elif ext == '.htm': | |
| mime_type = 'text/html' | |
| elif ext == '.md': | |
| mime_type = 'text/markdown' | |
| else: | |
| mime_type = 'application/octet-stream' # general binary data type | |
| href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
| return href | |
| def CompressXML(xml_text): | |
| root = ET.fromstring(xml_text) | |
| for elem in list(root.iter()): | |
| if isinstance(elem.tag, str) and 'Comment' in elem.tag: | |
| elem.parent.remove(elem) | |
| return ET.tostring(root, encoding='unicode', method="xml") | |
| def read_file_content(file,max_length): | |
| if file.type == "application/json": | |
| content = json.load(file) | |
| return str(content) | |
| elif file.type == "text/html" or file.type == "text/htm": | |
| content = BeautifulSoup(file, "html.parser") | |
| return content.text | |
| elif file.type == "application/xml" or file.type == "text/xml": | |
| tree = ET.parse(file) | |
| root = tree.getroot() | |
| xml = CompressXML(ET.tostring(root, encoding='unicode')) | |
| return xml | |
| elif file.type == "text/markdown" or file.type == "text/md": | |
| md = mistune.create_markdown() | |
| content = md(file.read().decode()) | |
| return content | |
| elif file.type == "text/plain": | |
| return file.getvalue().decode() | |
| else: | |
| return "" | |
| def extract_mime_type(file): | |
| # Check if the input is a string | |
| if isinstance(file, str): | |
| pattern = r"type='(.*?)'" | |
| match = re.search(pattern, file) | |
| if match: | |
| return match.group(1) | |
| else: | |
| raise ValueError(f"Unable to extract MIME type from {file}") | |
| # If it's not a string, assume it's a streamlit.UploadedFile object | |
| elif isinstance(file, streamlit.UploadedFile): | |
| return file.type | |
| else: | |
| raise TypeError("Input should be a string or a streamlit.UploadedFile object") | |
| def extract_file_extension(file): | |
| # get the file name directly from the UploadedFile object | |
| file_name = file.name | |
| pattern = r".*?\.(.*?)$" | |
| match = re.search(pattern, file_name) | |
| if match: | |
| return match.group(1) | |
| else: | |
| raise ValueError(f"Unable to extract file extension from {file_name}") | |
| def pdf2txt(docs): | |
| text = "" | |
| for file in docs: | |
| file_extension = extract_file_extension(file) | |
| # print the file extension | |
| st.write(f"File type extension: {file_extension}") | |
| # read the file according to its extension | |
| try: | |
| if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: | |
| text += file.getvalue().decode('utf-8') | |
| elif file_extension.lower() == 'pdf': | |
| from PyPDF2 import PdfReader | |
| pdf = PdfReader(BytesIO(file.getvalue())) | |
| for page in range(len(pdf.pages)): | |
| text += pdf.pages[page].extract_text() # new PyPDF2 syntax | |
| except Exception as e: | |
| st.write(f"Error processing file {file.name}: {e}") | |
| return text | |
| def txt2chunks(text): | |
| text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) | |
| return text_splitter.split_text(text) | |
| def vector_store(text_chunks): | |
| key = os.getenv('OPENAI_API_KEY') | |
| embeddings = OpenAIEmbeddings(openai_api_key=key) | |
| return FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| def get_chain(vectorstore): | |
| llm = ChatOpenAI() | |
| memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
| return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) | |
| def divide_prompt(prompt, max_length): | |
| words = prompt.split() | |
| chunks = [] | |
| current_chunk = [] | |
| current_length = 0 | |
| for word in words: | |
| if len(word) + current_length <= max_length: | |
| current_length += len(word) + 1 # Adding 1 to account for spaces | |
| current_chunk.append(word) | |
| else: | |
| chunks.append(' '.join(current_chunk)) | |
| current_chunk = [word] | |
| current_length = len(word) | |
| chunks.append(' '.join(current_chunk)) # Append the final chunk | |
| return chunks | |
| def create_zip_of_files(files): | |
| """ | |
| Create a zip file from a list of files. | |
| """ | |
| zip_name = "all_files.zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for file in files: | |
| zipf.write(file) | |
| return zip_name | |
| def get_zip_download_link(zip_file): | |
| """ | |
| Generate a link to download the zip file. | |
| """ | |
| with open(zip_file, 'rb') as f: | |
| data = f.read() | |
| b64 = base64.b64encode(data).decode() | |
| href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
| return href | |
| def main(): | |
| # Audio, transcribe, GPT: | |
| filename = save_and_play_audio(audio_recorder) | |
| if filename is not None: | |
| try: | |
| transcription = transcribe_audio(filename, "whisper-1") | |
| except: | |
| st.write(' ') | |
| st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
| filename = None | |
| # prompt interfaces | |
| user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) | |
| # file section interface for prompts against large documents as context | |
| collength, colupload = st.columns([2,3]) # adjust the ratio as needed | |
| with collength: | |
| max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) | |
| with colupload: | |
| uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) | |
| # Document section chat | |
| document_sections = deque() | |
| document_responses = {} | |
| if uploaded_file is not None: | |
| file_content = read_file_content(uploaded_file, max_length) | |
| document_sections.extend(divide_document(file_content, max_length)) | |
| if len(document_sections) > 0: | |
| if st.button("ποΈ View Upload"): | |
| st.markdown("**Sections of the uploaded file:**") | |
| for i, section in enumerate(list(document_sections)): | |
| st.markdown(f"**Section {i+1}**\n{section}") | |
| st.markdown("**Chat with the model:**") | |
| for i, section in enumerate(list(document_sections)): | |
| if i in document_responses: | |
| st.markdown(f"**Section {i+1}**\n{document_responses[i]}") | |
| else: | |
| if st.button(f"Chat about Section {i+1}"): | |
| st.write('Reasoning with your inputs...') | |
| response = chat_with_model(user_prompt, section, model_choice) | |
| document_responses[i] = response | |
| filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) | |
| create_file(filename, user_prompt, response, should_save) | |
| st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
| if st.button('π¬ Chat'): | |
| st.write('Reasoning with your inputs...') | |
| # Divide the user_prompt into smaller sections | |
| user_prompt_sections = divide_prompt(user_prompt, max_length) | |
| full_response = '' | |
| for prompt_section in user_prompt_sections: | |
| # Process each section with the model | |
| response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) | |
| full_response += response + '\n' # Combine the responses | |
| response = full_response | |
| filename = generate_filename(user_prompt, choice) | |
| create_file(filename, user_prompt, response, should_save) | |
| st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
| all_files = glob.glob("*.*") | |
| all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names | |
| all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
| # Sidebar buttons Download All and Delete All | |
| colDownloadAll, colDeleteAll = st.sidebar.columns([3,3]) | |
| with colDownloadAll: | |
| if st.button("β¬οΈ Download All"): | |
| zip_file = create_zip_of_files(all_files) | |
| st.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
| with colDeleteAll: | |
| if st.button("π Delete All"): | |
| for file in all_files: | |
| os.remove(file) | |
| st.experimental_rerun() | |
| # Sidebar of Files Saving History and surfacing files as context of prompts and responses | |
| file_contents='' | |
| next_action='' | |
| for file in all_files: | |
| col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed | |
| with col1: | |
| if st.button("π", key="md_"+file): # md emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='md' | |
| with col2: | |
| st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
| with col3: | |
| if st.button("π", key="open_"+file): # open emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='open' | |
| with col4: | |
| if st.button("π", key="read_"+file): # search emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='search' | |
| with col5: | |
| if st.button("π", key="delete_"+file): | |
| os.remove(file) | |
| st.experimental_rerun() | |
| if len(file_contents) > 0: | |
| if next_action=='open': | |
| file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
| if next_action=='md': | |
| st.markdown(file_contents) | |
| if next_action=='search': | |
| file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
| st.write('Reasoning with your inputs...') | |
| response = chat_with_model(user_prompt, file_contents, model_choice) | |
| filename = generate_filename(file_contents, choice) | |
| create_file(filename, user_prompt, response, should_save) | |
| st.experimental_rerun() | |
| if __name__ == "__main__": | |
| main() | |
| load_dotenv() | |
| st.write(css, unsafe_allow_html=True) | |
| st.header("Chat with documents :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| process_user_input(user_question) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| docs = st.file_uploader("import documents", accept_multiple_files=True) | |
| with st.spinner("Processing"): | |
| raw = pdf2txt(docs) | |
| if len(raw) > 0: | |
| length = str(len(raw)) | |
| text_chunks = txt2chunks(raw) | |
| vectorstore = vector_store(text_chunks) | |
| st.session_state.conversation = get_chain(vectorstore) | |
| st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing | |
| filename = generate_filename(raw, 'txt') | |
| create_file(filename, raw, '', should_save) |