File size: 24,288 Bytes
7697331 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
"""
Main Dash application for Chronos 2 Time Series Forecasting
"""
import base64
import io
import logging
from pathlib import Path
from dash import Dash, html, dcc, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
import pandas as pd
# Import components
from components.upload import (
create_upload_component,
create_column_selector,
create_sample_data_loader,
format_upload_status,
create_data_preview_table,
create_quality_report
)
from components.chart import (
create_forecast_chart,
create_empty_chart,
create_metrics_display,
create_backtest_metrics_display,
decimate_data
)
from components.controls import (
create_forecast_controls,
create_model_status_bar,
create_results_section,
create_app_header,
create_footer
)
# Import services
from services.model_service import model_service
from services.data_processor import data_processor
from services.cache_manager import cache_manager
# Import utilities
from utils.validators import (
validate_file_upload,
validate_column_selection,
validate_forecast_parameters
)
from utils.metrics import calculate_metrics
# Import configuration
from config.settings import CONFIG, APP_METADATA, LOG_LEVEL, LOG_FORMAT, LOG_FILE, setup_directories
from config.constants import MAX_CHART_POINTS
# Setup logging with both file and console handlers
def setup_logging():
"""Configure logging to write to both file and console"""
# Create logs directory first
Path(LOG_FILE).parent.mkdir(parents=True, exist_ok=True)
# Get root logger
root_logger = logging.getLogger()
root_logger.setLevel(LOG_LEVEL)
# Remove any existing handlers
root_logger.handlers = []
# Create formatters
formatter = logging.Formatter(LOG_FORMAT)
# File handler - writes all logs to file
file_handler = logging.FileHandler(LOG_FILE, mode='a', encoding='utf-8')
file_handler.setLevel(LOG_LEVEL)
file_handler.setFormatter(formatter)
root_logger.addHandler(file_handler)
# Console handler - writes to stderr
console_handler = logging.StreamHandler()
console_handler.setLevel(LOG_LEVEL)
console_handler.setFormatter(formatter)
root_logger.addHandler(console_handler)
logger = logging.getLogger(__name__)
logger.info(f"Logging configured - writing to {LOG_FILE}")
return logger
logger = setup_logging()
# Initialize Dash app
app = Dash(
__name__,
external_stylesheets=[
dbc.themes.BOOTSTRAP,
'https://use.fontawesome.com/releases/v5.15.4/css/all.css'
],
suppress_callback_exceptions=True,
title=APP_METADATA['title']
)
# App layout
app.layout = dbc.Container([
# Header
create_app_header(),
# Model status
html.Div(id='model-status-bar'),
# Stores for data
dcc.Store(id='uploaded-data-store'),
dcc.Store(id='processed-data-store'),
dcc.Store(id='forecast-results-store'),
# Sample data loader
create_sample_data_loader(),
# Upload section
create_upload_component(),
# Column selector (hidden initially)
create_column_selector(),
# Forecast controls
create_forecast_controls(),
# Results section (hidden initially)
create_results_section(),
# Footer
create_footer()
], fluid=True, className="py-4")
# Callback: Load model on startup
@app.callback(
Output('model-status-bar', 'children'),
Input('model-status-bar', 'id')
)
def load_model_on_startup(_):
"""Load the model when the app starts"""
logger.info("=" * 80)
logger.info("CALLBACK: load_model_on_startup - ENTRY")
logger.info("=" * 80)
try:
logger.info("Attempting to load Chronos-2 model...")
result = model_service.load_model()
logger.info(f"Model loading result: {result}")
if result['status'] == 'success':
logger.info("β Model loaded successfully - returning 'ready' status bar")
status_bar = create_model_status_bar('ready')
logger.info(f"Status bar created: {type(status_bar)}")
return status_bar
else:
logger.error(f"β Model loading failed: {result.get('error')}")
return create_model_status_bar('error')
except Exception as e:
logger.error(f"β EXCEPTION in load_model_on_startup: {str(e)}", exc_info=True)
return create_model_status_bar('error')
finally:
logger.info("CALLBACK: load_model_on_startup - EXIT")
logger.info("=" * 80)
# Callback: Handle file upload
@app.callback(
[Output('uploaded-data-store', 'data'),
Output('upload-status', 'children'),
Output('column-selector-card', 'style'),
Output('date-column-dropdown', 'options'),
Output('target-column-dropdown', 'options'),
Output('id-column-dropdown', 'options'),
Output('covariate-columns-dropdown', 'options')],
Input('upload-data', 'contents'),
State('upload-data', 'filename')
)
def handle_file_upload(contents, filename):
"""Handle file upload and extract column information"""
logger.info("=" * 80)
logger.info("CALLBACK: handle_file_upload - ENTRY")
logger.info(f"Filename: {filename}")
logger.info(f"Contents received: {contents is not None}")
logger.info("=" * 80)
if contents is None:
logger.warning("No contents provided - returning empty response")
return None, '', {'display': 'none'}, [], [], [], []
try:
# Parse uploaded file
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
# Server-side validation
validation = validate_file_upload(filename, len(decoded))
if not validation['valid']:
error_msg = ' '.join(validation['issues'])
logger.warning(f"File upload validation failed: {error_msg}")
return None, format_upload_status('error', error_msg, True), {'display': 'none'}, [], [], [], []
# Additional security: Sanitize filename
import re
safe_filename = re.sub(r'[^\w\-\.]', '_', filename)
if safe_filename != filename:
logger.info(f"Sanitized filename from '{filename}' to '{safe_filename}'")
# Load file
logger.info(f"Loading file with data_processor: {len(decoded)} bytes")
result = data_processor.load_file(decoded, filename)
logger.info(f"Load result status: {result['status']}")
if result['status'] == 'error':
logger.error(f"β File loading error: {result['error']}")
return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], []
# Get column information
logger.info("Getting column information from data_processor")
col_info = data_processor.get_column_info()
logger.info(f"Column info: date_cols={col_info['date_columns']}, numeric_cols={col_info['numeric_columns'][:5]}...")
# Create dropdown options
date_options = [{'label': col, 'value': col} for col in col_info['date_columns']]
target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
id_options = [{'label': col, 'value': col} for col in col_info['all_columns']]
# Covariates can be any numeric column
covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
logger.info(f"Created dropdown options: {len(date_options)} date, {len(target_options)} target, {len(id_options)} id, {len(covariate_options)} covariate")
success_msg = f"Successfully loaded {filename} ({len(result['data'])} rows, {len(result['data'].columns)} columns)"
logger.info(f"β {success_msg}")
logger.info("CALLBACK: handle_file_upload - EXIT (success)")
logger.info("=" * 80)
return (
result['metadata'],
format_upload_status('success', success_msg),
{'display': 'block'},
date_options,
target_options,
id_options,
covariate_options
)
except Exception as e:
logger.error(f"β EXCEPTION in handle_file_upload: {str(e)}", exc_info=True)
logger.info("CALLBACK: handle_file_upload - EXIT (exception)")
logger.info("=" * 80)
return None, format_upload_status('error', f"Error: {str(e)}", True), {'display': 'none'}, [], [], [], []
# Callback: Load sample data
@app.callback(
[Output('uploaded-data-store', 'data', allow_duplicate=True),
Output('upload-status', 'children', allow_duplicate=True),
Output('column-selector-card', 'style', allow_duplicate=True),
Output('date-column-dropdown', 'options', allow_duplicate=True),
Output('target-column-dropdown', 'options', allow_duplicate=True),
Output('id-column-dropdown', 'options', allow_duplicate=True),
Output('covariate-columns-dropdown', 'options', allow_duplicate=True)],
[Input('load-weather', 'n_clicks'),
Input('load-airquality', 'n_clicks'),
Input('load-bitcoin', 'n_clicks'),
Input('load-stock', 'n_clicks'),
Input('load-traffic', 'n_clicks'),
Input('load-electricity', 'n_clicks')],
prevent_initial_call=True
)
def load_sample_data(weather_clicks, airquality_clicks, bitcoin_clicks, stock_clicks, traffic_clicks, electricity_clicks):
"""Load sample datasets"""
ctx = callback_context
if not ctx.triggered:
return None, '', {'display': 'none'}, [], [], [], []
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
# Map button to filename
sample_files = {
'load-weather': 'weather_stations.csv',
'load-airquality': 'air_quality_uci.csv',
'load-bitcoin': 'bitcoin_price.csv',
'load-stock': 'stock_sp500.csv',
'load-traffic': 'traffic_speeds.csv',
'load-electricity': 'electricity_consumption.csv'
}
filename = sample_files.get(button_id)
if not filename:
return None, '', {'display': 'none'}, [], [], [], []
try:
# Load sample file
filepath = f"{CONFIG['datasets_folder']}/{filename}"
with open(filepath, 'rb') as f:
contents = f.read()
result = data_processor.load_file(contents, filename)
if result['status'] == 'error':
return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], []
# Get column information
col_info = data_processor.get_column_info()
date_options = [{'label': col, 'value': col} for col in col_info['date_columns']]
target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
id_options = [{'label': col, 'value': col} for col in col_info['all_columns']]
covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
success_msg = f"Loaded sample dataset: {filename}"
return (
result['metadata'],
format_upload_status('success', success_msg),
{'display': 'block'},
date_options,
target_options,
id_options,
covariate_options
)
except Exception as e:
logger.error(f"Error loading sample data: {str(e)}", exc_info=True)
error_msg = f"Sample data not found. Please ensure datasets folder exists: {CONFIG['datasets_folder']}"
return None, format_upload_status('warning', error_msg), {'display': 'none'}, [], [], [], []
# Callback: Handle forecasting mode changes
@app.callback(
[Output('covariate-section', 'style'),
Output('target-help-text', 'children')],
Input('forecasting-mode', 'value')
)
def update_forecasting_mode(mode):
"""Update UI based on selected forecasting mode"""
if mode == 'univariate':
return (
{'display': 'none'},
'Select ONE target variable (multi-select available, but use only one for univariate)'
)
elif mode == 'multivariate':
return (
{'display': 'none'},
'Select MULTIPLE target variables to forecast together'
)
else: # covariate-informed
return (
{'display': 'block'},
'Select target variable(s) to forecast (can select multiple)'
)
# Callback: Handle backtest enable/disable
@app.callback(
Output('backtest-controls', 'style'),
Input('backtest-enable', 'value')
)
def toggle_backtest_controls(backtest_enabled):
"""Show/hide backtest controls based on checkbox"""
if 'enabled' in backtest_enabled:
return {'display': 'block'}
return {'display': 'none'}
# Callback: Update data preview and quality report
@app.callback(
[Output('data-preview-container', 'children'),
Output('data-quality-report', 'children'),
Output('processed-data-store', 'data'),
Output('generate-forecast-btn', 'disabled')],
[Input('date-column-dropdown', 'value'),
Input('target-column-dropdown', 'value'),
Input('forecasting-mode', 'value'),
Input('covariate-columns-dropdown', 'value')],
State('id-column-dropdown', 'value')
)
def update_preview_and_process(date_col, target_col, mode, covariate_cols, id_col):
"""Update data preview and process data when columns are selected"""
logger.info("=" * 80)
logger.info("CALLBACK: update_preview_and_process - ENTRY")
logger.info(f"date_col: {date_col}")
logger.info(f"target_col: {target_col}")
logger.info(f"mode: {mode}")
logger.info(f"covariate_cols: {covariate_cols}")
logger.info(f"id_col: {id_col}")
logger.info("=" * 80)
if not date_col or not target_col:
logger.warning(f"Missing required columns - date_col: {date_col}, target_col: {target_col}")
return '', '', None, True
try:
# Ensure target_col is a list for consistency
if not isinstance(target_col, list):
target_col = [target_col] if target_col else []
# Ensure covariate_cols is a list
if covariate_cols and not isinstance(covariate_cols, list):
covariate_cols = [covariate_cols]
# Validate column selection
# For multivariate, validate each target column
for t_col in target_col:
validation = validate_column_selection(data_processor.data, date_col, t_col)
if not validation['valid']:
error_msg = ' '.join(validation['issues'])
return format_upload_status('error', error_msg, True), '', None, True
# Show preview
preview = create_data_preview_table(data_processor.data)
# Process data - pass target columns based on mode
# For univariate: single target, for multivariate: list of targets
if mode == 'univariate':
target_to_process = target_col[0] # Single target string
else:
target_to_process = target_col # List of targets for multivariate
result = data_processor.preprocess(
date_column=date_col,
target_column=target_to_process,
id_column=id_col,
forecast_horizon=30
)
if result['status'] == 'error':
return preview, format_upload_status('error', result['error'], True), None, True
# Show quality report
quality_report = create_quality_report(result['quality_report'])
# Store processed data with forecasting mode and columns
processed_data = {
'data': result['data'].to_json(date_format='iso'),
'quality_report': result['quality_report'],
'forecasting_mode': mode,
'target_columns': target_col,
'covariate_columns': covariate_cols if covariate_cols else [],
'date_column': date_col,
'id_column': id_col
}
return preview, quality_report, processed_data, False
except Exception as e:
logger.error(f"Error in preview/process: {str(e)}", exc_info=True)
return '', format_upload_status('error', f"Error: {str(e)}", True), None, True
# Callback: Generate forecast
@app.callback(
[Output('forecast-chart', 'figure'),
Output('metrics-display', 'children'),
Output('results-card', 'style'),
Output('loading-output', 'children')],
Input('generate-forecast-btn', 'n_clicks'),
[State('processed-data-store', 'data'),
State('horizon-slider', 'value'),
State('confidence-checklist', 'value'),
State('backtest-enable', 'value'),
State('backtest-size-slider', 'value')],
prevent_initial_call=True
)
def generate_forecast(n_clicks, processed_data, horizon, confidence_levels, backtest_enabled, backtest_size):
"""Generate forecast using the Chronos model, optionally with backtesting"""
logger.info("=" * 80)
logger.info("CALLBACK: generate_forecast - ENTRY")
logger.info(f"n_clicks: {n_clicks}")
logger.info(f"horizon: {horizon}")
logger.info(f"confidence_levels: {confidence_levels}")
logger.info(f"processed_data is None: {processed_data is None}")
logger.info("=" * 80)
if not processed_data or not n_clicks:
logger.warning(f"Early return - processed_data exists: {processed_data is not None}, n_clicks: {n_clicks}")
return create_empty_chart(), '', {'display': 'none'}, ''
try:
# Load processed data
logger.info("Loading processed data from JSON...")
df = pd.read_json(processed_data['data'])
logger.info(f"Loaded DataFrame: shape={df.shape}, columns={df.columns.tolist()}")
# Get forecasting mode and metadata
mode = processed_data.get('forecasting_mode', 'univariate')
target_columns = processed_data.get('target_columns', [])
covariate_columns = processed_data.get('covariate_columns', [])
logger.info(f"Forecasting mode: {mode}")
logger.info(f"Target columns: {target_columns}")
logger.info(f"Covariate columns: {covariate_columns}")
# Validate parameters
logger.info("Validating forecast parameters...")
validation = validate_forecast_parameters(horizon, confidence_levels, len(df))
logger.info(f"Validation result: {validation}")
if not validation['valid']:
error_msg = ' '.join(validation['issues'])
logger.error(f"β Validation failed: {error_msg}")
return create_empty_chart(error_msg), '', {'display': 'none'}, ''
# Perform backtesting if enabled
backtest_df = None
backtest_metrics = None
if backtest_enabled and 'enabled' in backtest_enabled:
logger.info(f"Backtesting enabled with test_size={backtest_size}")
backtest_result = model_service.backtest(
data=df,
test_size=min(backtest_size, len(df) // 3), # Ensure we have enough training data
forecast_horizon=horizon,
confidence_levels=confidence_levels
)
if backtest_result['status'] == 'success':
backtest_df = backtest_result['backtest_data']
backtest_metrics = backtest_result['metrics']
logger.info(f"β Backtest completed: {backtest_metrics}")
else:
logger.warning(f"Backtest failed: {backtest_result.get('error', 'Unknown error')}")
# Generate forecast
logger.info(f"Calling model_service.predict() - horizon={horizon}, confidence={confidence_levels}, mode={mode}")
logger.info(f"Model service state: is_loaded={model_service.is_loaded}, variant={model_service.model_variant}")
forecast_result = model_service.predict(
data=df,
horizon=horizon,
confidence_levels=confidence_levels
)
logger.info(f"Forecast result status: {forecast_result['status']}")
if forecast_result['status'] == 'error':
logger.error(f"β Forecast generation failed: {forecast_result['error']}")
return create_empty_chart(f"Forecast failed: {forecast_result['error']}"), '', {'display': 'none'}, ''
# Get forecast data
forecast_df = forecast_result['forecast']
logger.info(f"Forecast DataFrame shape: {forecast_df.shape}, columns: {forecast_df.columns.tolist()}")
# Decimate data if too large
logger.info("Decimating data for chart...")
historical_decimated = decimate_data(df, MAX_CHART_POINTS // 2)
forecast_decimated = decimate_data(forecast_df, MAX_CHART_POINTS // 2)
logger.info(f"Decimated - historical: {len(historical_decimated)}, forecast: {len(forecast_decimated)}")
# Prepare data for chart (rename Chronos 2 columns to chart format)
logger.info("Renaming columns for chart...")
historical_for_chart = historical_decimated.rename(columns={
'timestamp': 'ds',
'target': 'y'
})
logger.info(f"Historical chart data columns: {historical_for_chart.columns.tolist()}")
# Create chart title and labels based on target columns
logger.info("Creating forecast chart...")
primary_target = target_columns[0] if target_columns else 'Target'
if mode == 'multivariate' and len(target_columns) > 1:
chart_title = f"Forecast: {primary_target} (with {', '.join(target_columns[1:])} as covariates)"
y_label = primary_target
elif covariate_columns:
chart_title = f"Forecast: {primary_target} (with covariates)"
y_label = primary_target
else:
chart_title = f"Forecast: {primary_target}"
y_label = primary_target
fig = create_forecast_chart(
historical_data=historical_for_chart,
forecast_data=forecast_decimated,
confidence_levels=confidence_levels,
title=chart_title,
y_axis_label=y_label,
backtest_data=backtest_df
)
logger.info(f"Chart created: {type(fig)}")
# Create metrics display
metrics = {
'inference_time': forecast_result['inference_time'],
'data_points': len(df),
'horizon': horizon
}
logger.info(f"Creating metrics display: {metrics}")
# Add backtest metrics if available
if backtest_metrics:
metrics_components = dbc.Row([
dbc.Col(create_metrics_display(metrics, forecast_result['inference_time']), md=6),
dbc.Col(create_backtest_metrics_display(backtest_metrics), md=6)
])
else:
metrics_components = dbc.Row(create_metrics_display(
metrics,
forecast_result['inference_time']
))
logger.info("β Forecast generation successful - returning chart and metrics")
logger.info("CALLBACK: generate_forecast - EXIT (success)")
logger.info("=" * 80)
return fig, metrics_components, {'display': 'block'}, ''
except Exception as e:
logger.error(f"β EXCEPTION in generate_forecast: {str(e)}", exc_info=True)
logger.info("CALLBACK: generate_forecast - EXIT (exception)")
logger.info("=" * 80)
return create_empty_chart(f"Error: {str(e)}"), '', {'display': 'none'}, ''
# Health check endpoint
@app.server.route('/health')
def health_check():
"""Health check endpoint for deployment monitoring"""
status = {
'status': 'healthy' if model_service.is_loaded else 'degraded',
'model_loaded': model_service.is_loaded,
'model_variant': model_service.model_variant,
'device': model_service.device
}
return status
# Run the app
if __name__ == '__main__':
# Setup directories
setup_directories()
logger.info(f"Starting Chronos 2 Forecasting App")
logger.info(f"Configuration: {CONFIG}")
# Get host and port from environment variables (for HuggingFace Spaces, Render, etc.)
import os
host = os.getenv('HOST', '127.0.0.1')
port = int(os.getenv('PORT', '7860')) # 7860 is HuggingFace Spaces default
debug = os.getenv('DEBUG', 'True').lower() == 'true'
# Run the app
app.run_server(
host=host,
port=port,
debug=debug
)
|