File size: 24,288 Bytes
7697331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
"""
Main Dash application for Chronos 2 Time Series Forecasting
"""

import base64
import io
import logging
from pathlib import Path
from dash import Dash, html, dcc, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
import pandas as pd

# Import components
from components.upload import (
    create_upload_component,
    create_column_selector,
    create_sample_data_loader,
    format_upload_status,
    create_data_preview_table,
    create_quality_report
)
from components.chart import (
    create_forecast_chart,
    create_empty_chart,
    create_metrics_display,
    create_backtest_metrics_display,
    decimate_data
)
from components.controls import (
    create_forecast_controls,
    create_model_status_bar,
    create_results_section,
    create_app_header,
    create_footer
)

# Import services
from services.model_service import model_service
from services.data_processor import data_processor
from services.cache_manager import cache_manager

# Import utilities
from utils.validators import (
    validate_file_upload,
    validate_column_selection,
    validate_forecast_parameters
)
from utils.metrics import calculate_metrics

# Import configuration
from config.settings import CONFIG, APP_METADATA, LOG_LEVEL, LOG_FORMAT, LOG_FILE, setup_directories
from config.constants import MAX_CHART_POINTS

# Setup logging with both file and console handlers
def setup_logging():
    """Configure logging to write to both file and console"""
    # Create logs directory first
    Path(LOG_FILE).parent.mkdir(parents=True, exist_ok=True)

    # Get root logger
    root_logger = logging.getLogger()
    root_logger.setLevel(LOG_LEVEL)

    # Remove any existing handlers
    root_logger.handlers = []

    # Create formatters
    formatter = logging.Formatter(LOG_FORMAT)

    # File handler - writes all logs to file
    file_handler = logging.FileHandler(LOG_FILE, mode='a', encoding='utf-8')
    file_handler.setLevel(LOG_LEVEL)
    file_handler.setFormatter(formatter)
    root_logger.addHandler(file_handler)

    # Console handler - writes to stderr
    console_handler = logging.StreamHandler()
    console_handler.setLevel(LOG_LEVEL)
    console_handler.setFormatter(formatter)
    root_logger.addHandler(console_handler)

    logger = logging.getLogger(__name__)
    logger.info(f"Logging configured - writing to {LOG_FILE}")
    return logger

logger = setup_logging()

# Initialize Dash app
app = Dash(
    __name__,
    external_stylesheets=[
        dbc.themes.BOOTSTRAP,
        'https://use.fontawesome.com/releases/v5.15.4/css/all.css'
    ],
    suppress_callback_exceptions=True,
    title=APP_METADATA['title']
)

# App layout
app.layout = dbc.Container([
    # Header
    create_app_header(),

    # Model status
    html.Div(id='model-status-bar'),

    # Stores for data
    dcc.Store(id='uploaded-data-store'),
    dcc.Store(id='processed-data-store'),
    dcc.Store(id='forecast-results-store'),

    # Sample data loader
    create_sample_data_loader(),

    # Upload section
    create_upload_component(),

    # Column selector (hidden initially)
    create_column_selector(),

    # Forecast controls
    create_forecast_controls(),

    # Results section (hidden initially)
    create_results_section(),

    # Footer
    create_footer()

], fluid=True, className="py-4")


# Callback: Load model on startup
@app.callback(
    Output('model-status-bar', 'children'),
    Input('model-status-bar', 'id')
)
def load_model_on_startup(_):
    """Load the model when the app starts"""
    logger.info("=" * 80)
    logger.info("CALLBACK: load_model_on_startup - ENTRY")
    logger.info("=" * 80)

    try:
        logger.info("Attempting to load Chronos-2 model...")
        result = model_service.load_model()

        logger.info(f"Model loading result: {result}")

        if result['status'] == 'success':
            logger.info("βœ“ Model loaded successfully - returning 'ready' status bar")
            status_bar = create_model_status_bar('ready')
            logger.info(f"Status bar created: {type(status_bar)}")
            return status_bar
        else:
            logger.error(f"βœ— Model loading failed: {result.get('error')}")
            return create_model_status_bar('error')
    except Exception as e:
        logger.error(f"βœ— EXCEPTION in load_model_on_startup: {str(e)}", exc_info=True)
        return create_model_status_bar('error')
    finally:
        logger.info("CALLBACK: load_model_on_startup - EXIT")
        logger.info("=" * 80)


# Callback: Handle file upload
@app.callback(
    [Output('uploaded-data-store', 'data'),
     Output('upload-status', 'children'),
     Output('column-selector-card', 'style'),
     Output('date-column-dropdown', 'options'),
     Output('target-column-dropdown', 'options'),
     Output('id-column-dropdown', 'options'),
     Output('covariate-columns-dropdown', 'options')],
    Input('upload-data', 'contents'),
    State('upload-data', 'filename')
)
def handle_file_upload(contents, filename):
    """Handle file upload and extract column information"""
    logger.info("=" * 80)
    logger.info("CALLBACK: handle_file_upload - ENTRY")
    logger.info(f"Filename: {filename}")
    logger.info(f"Contents received: {contents is not None}")
    logger.info("=" * 80)

    if contents is None:
        logger.warning("No contents provided - returning empty response")
        return None, '', {'display': 'none'}, [], [], [], []

    try:
        # Parse uploaded file
        content_type, content_string = contents.split(',')
        decoded = base64.b64decode(content_string)

        # Server-side validation
        validation = validate_file_upload(filename, len(decoded))
        if not validation['valid']:
            error_msg = ' '.join(validation['issues'])
            logger.warning(f"File upload validation failed: {error_msg}")
            return None, format_upload_status('error', error_msg, True), {'display': 'none'}, [], [], [], []

        # Additional security: Sanitize filename
        import re
        safe_filename = re.sub(r'[^\w\-\.]', '_', filename)
        if safe_filename != filename:
            logger.info(f"Sanitized filename from '{filename}' to '{safe_filename}'")

        # Load file
        logger.info(f"Loading file with data_processor: {len(decoded)} bytes")
        result = data_processor.load_file(decoded, filename)
        logger.info(f"Load result status: {result['status']}")

        if result['status'] == 'error':
            logger.error(f"βœ— File loading error: {result['error']}")
            return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], []

        # Get column information
        logger.info("Getting column information from data_processor")
        col_info = data_processor.get_column_info()
        logger.info(f"Column info: date_cols={col_info['date_columns']}, numeric_cols={col_info['numeric_columns'][:5]}...")

        # Create dropdown options
        date_options = [{'label': col, 'value': col} for col in col_info['date_columns']]
        target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
        id_options = [{'label': col, 'value': col} for col in col_info['all_columns']]
        # Covariates can be any numeric column
        covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]

        logger.info(f"Created dropdown options: {len(date_options)} date, {len(target_options)} target, {len(id_options)} id, {len(covariate_options)} covariate")

        success_msg = f"Successfully loaded {filename} ({len(result['data'])} rows, {len(result['data'].columns)} columns)"
        logger.info(f"βœ“ {success_msg}")

        logger.info("CALLBACK: handle_file_upload - EXIT (success)")
        logger.info("=" * 80)

        return (
            result['metadata'],
            format_upload_status('success', success_msg),
            {'display': 'block'},
            date_options,
            target_options,
            id_options,
            covariate_options
        )

    except Exception as e:
        logger.error(f"βœ— EXCEPTION in handle_file_upload: {str(e)}", exc_info=True)
        logger.info("CALLBACK: handle_file_upload - EXIT (exception)")
        logger.info("=" * 80)
        return None, format_upload_status('error', f"Error: {str(e)}", True), {'display': 'none'}, [], [], [], []


# Callback: Load sample data
@app.callback(
    [Output('uploaded-data-store', 'data', allow_duplicate=True),
     Output('upload-status', 'children', allow_duplicate=True),
     Output('column-selector-card', 'style', allow_duplicate=True),
     Output('date-column-dropdown', 'options', allow_duplicate=True),
     Output('target-column-dropdown', 'options', allow_duplicate=True),
     Output('id-column-dropdown', 'options', allow_duplicate=True),
     Output('covariate-columns-dropdown', 'options', allow_duplicate=True)],
    [Input('load-weather', 'n_clicks'),
     Input('load-airquality', 'n_clicks'),
     Input('load-bitcoin', 'n_clicks'),
     Input('load-stock', 'n_clicks'),
     Input('load-traffic', 'n_clicks'),
     Input('load-electricity', 'n_clicks')],
    prevent_initial_call=True
)
def load_sample_data(weather_clicks, airquality_clicks, bitcoin_clicks, stock_clicks, traffic_clicks, electricity_clicks):
    """Load sample datasets"""
    ctx = callback_context
    if not ctx.triggered:
        return None, '', {'display': 'none'}, [], [], [], []

    button_id = ctx.triggered[0]['prop_id'].split('.')[0]

    # Map button to filename
    sample_files = {
        'load-weather': 'weather_stations.csv',
        'load-airquality': 'air_quality_uci.csv',
        'load-bitcoin': 'bitcoin_price.csv',
        'load-stock': 'stock_sp500.csv',
        'load-traffic': 'traffic_speeds.csv',
        'load-electricity': 'electricity_consumption.csv'
    }

    filename = sample_files.get(button_id)
    if not filename:
        return None, '', {'display': 'none'}, [], [], [], []

    try:
        # Load sample file
        filepath = f"{CONFIG['datasets_folder']}/{filename}"
        with open(filepath, 'rb') as f:
            contents = f.read()

        result = data_processor.load_file(contents, filename)

        if result['status'] == 'error':
            return None, format_upload_status('error', result['error'], True), {'display': 'none'}, [], [], [], []

        # Get column information
        col_info = data_processor.get_column_info()

        date_options = [{'label': col, 'value': col} for col in col_info['date_columns']]
        target_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]
        id_options = [{'label': col, 'value': col} for col in col_info['all_columns']]
        covariate_options = [{'label': col, 'value': col} for col in col_info['numeric_columns']]

        success_msg = f"Loaded sample dataset: {filename}"

        return (
            result['metadata'],
            format_upload_status('success', success_msg),
            {'display': 'block'},
            date_options,
            target_options,
            id_options,
            covariate_options
        )

    except Exception as e:
        logger.error(f"Error loading sample data: {str(e)}", exc_info=True)
        error_msg = f"Sample data not found. Please ensure datasets folder exists: {CONFIG['datasets_folder']}"
        return None, format_upload_status('warning', error_msg), {'display': 'none'}, [], [], [], []


# Callback: Handle forecasting mode changes
@app.callback(
    [Output('covariate-section', 'style'),
     Output('target-help-text', 'children')],
    Input('forecasting-mode', 'value')
)
def update_forecasting_mode(mode):
    """Update UI based on selected forecasting mode"""
    if mode == 'univariate':
        return (
            {'display': 'none'},
            'Select ONE target variable (multi-select available, but use only one for univariate)'
        )
    elif mode == 'multivariate':
        return (
            {'display': 'none'},
            'Select MULTIPLE target variables to forecast together'
        )
    else:  # covariate-informed
        return (
            {'display': 'block'},
            'Select target variable(s) to forecast (can select multiple)'
        )


# Callback: Handle backtest enable/disable
@app.callback(
    Output('backtest-controls', 'style'),
    Input('backtest-enable', 'value')
)
def toggle_backtest_controls(backtest_enabled):
    """Show/hide backtest controls based on checkbox"""
    if 'enabled' in backtest_enabled:
        return {'display': 'block'}
    return {'display': 'none'}


# Callback: Update data preview and quality report
@app.callback(
    [Output('data-preview-container', 'children'),
     Output('data-quality-report', 'children'),
     Output('processed-data-store', 'data'),
     Output('generate-forecast-btn', 'disabled')],
    [Input('date-column-dropdown', 'value'),
     Input('target-column-dropdown', 'value'),
     Input('forecasting-mode', 'value'),
     Input('covariate-columns-dropdown', 'value')],
    State('id-column-dropdown', 'value')
)
def update_preview_and_process(date_col, target_col, mode, covariate_cols, id_col):
    """Update data preview and process data when columns are selected"""
    logger.info("=" * 80)
    logger.info("CALLBACK: update_preview_and_process - ENTRY")
    logger.info(f"date_col: {date_col}")
    logger.info(f"target_col: {target_col}")
    logger.info(f"mode: {mode}")
    logger.info(f"covariate_cols: {covariate_cols}")
    logger.info(f"id_col: {id_col}")
    logger.info("=" * 80)

    if not date_col or not target_col:
        logger.warning(f"Missing required columns - date_col: {date_col}, target_col: {target_col}")
        return '', '', None, True

    try:
        # Ensure target_col is a list for consistency
        if not isinstance(target_col, list):
            target_col = [target_col] if target_col else []

        # Ensure covariate_cols is a list
        if covariate_cols and not isinstance(covariate_cols, list):
            covariate_cols = [covariate_cols]

        # Validate column selection
        # For multivariate, validate each target column
        for t_col in target_col:
            validation = validate_column_selection(data_processor.data, date_col, t_col)
            if not validation['valid']:
                error_msg = ' '.join(validation['issues'])
                return format_upload_status('error', error_msg, True), '', None, True

        # Show preview
        preview = create_data_preview_table(data_processor.data)

        # Process data - pass target columns based on mode
        # For univariate: single target, for multivariate: list of targets
        if mode == 'univariate':
            target_to_process = target_col[0]  # Single target string
        else:
            target_to_process = target_col  # List of targets for multivariate

        result = data_processor.preprocess(
            date_column=date_col,
            target_column=target_to_process,
            id_column=id_col,
            forecast_horizon=30
        )

        if result['status'] == 'error':
            return preview, format_upload_status('error', result['error'], True), None, True

        # Show quality report
        quality_report = create_quality_report(result['quality_report'])

        # Store processed data with forecasting mode and columns
        processed_data = {
            'data': result['data'].to_json(date_format='iso'),
            'quality_report': result['quality_report'],
            'forecasting_mode': mode,
            'target_columns': target_col,
            'covariate_columns': covariate_cols if covariate_cols else [],
            'date_column': date_col,
            'id_column': id_col
        }

        return preview, quality_report, processed_data, False

    except Exception as e:
        logger.error(f"Error in preview/process: {str(e)}", exc_info=True)
        return '', format_upload_status('error', f"Error: {str(e)}", True), None, True


# Callback: Generate forecast
@app.callback(
    [Output('forecast-chart', 'figure'),
     Output('metrics-display', 'children'),
     Output('results-card', 'style'),
     Output('loading-output', 'children')],
    Input('generate-forecast-btn', 'n_clicks'),
    [State('processed-data-store', 'data'),
     State('horizon-slider', 'value'),
     State('confidence-checklist', 'value'),
     State('backtest-enable', 'value'),
     State('backtest-size-slider', 'value')],
    prevent_initial_call=True
)
def generate_forecast(n_clicks, processed_data, horizon, confidence_levels, backtest_enabled, backtest_size):
    """Generate forecast using the Chronos model, optionally with backtesting"""
    logger.info("=" * 80)
    logger.info("CALLBACK: generate_forecast - ENTRY")
    logger.info(f"n_clicks: {n_clicks}")
    logger.info(f"horizon: {horizon}")
    logger.info(f"confidence_levels: {confidence_levels}")
    logger.info(f"processed_data is None: {processed_data is None}")
    logger.info("=" * 80)

    if not processed_data or not n_clicks:
        logger.warning(f"Early return - processed_data exists: {processed_data is not None}, n_clicks: {n_clicks}")
        return create_empty_chart(), '', {'display': 'none'}, ''

    try:
        # Load processed data
        logger.info("Loading processed data from JSON...")
        df = pd.read_json(processed_data['data'])
        logger.info(f"Loaded DataFrame: shape={df.shape}, columns={df.columns.tolist()}")

        # Get forecasting mode and metadata
        mode = processed_data.get('forecasting_mode', 'univariate')
        target_columns = processed_data.get('target_columns', [])
        covariate_columns = processed_data.get('covariate_columns', [])

        logger.info(f"Forecasting mode: {mode}")
        logger.info(f"Target columns: {target_columns}")
        logger.info(f"Covariate columns: {covariate_columns}")

        # Validate parameters
        logger.info("Validating forecast parameters...")
        validation = validate_forecast_parameters(horizon, confidence_levels, len(df))
        logger.info(f"Validation result: {validation}")

        if not validation['valid']:
            error_msg = ' '.join(validation['issues'])
            logger.error(f"βœ— Validation failed: {error_msg}")
            return create_empty_chart(error_msg), '', {'display': 'none'}, ''

        # Perform backtesting if enabled
        backtest_df = None
        backtest_metrics = None

        if backtest_enabled and 'enabled' in backtest_enabled:
            logger.info(f"Backtesting enabled with test_size={backtest_size}")

            backtest_result = model_service.backtest(
                data=df,
                test_size=min(backtest_size, len(df) // 3),  # Ensure we have enough training data
                forecast_horizon=horizon,
                confidence_levels=confidence_levels
            )

            if backtest_result['status'] == 'success':
                backtest_df = backtest_result['backtest_data']
                backtest_metrics = backtest_result['metrics']
                logger.info(f"βœ“ Backtest completed: {backtest_metrics}")
            else:
                logger.warning(f"Backtest failed: {backtest_result.get('error', 'Unknown error')}")

        # Generate forecast
        logger.info(f"Calling model_service.predict() - horizon={horizon}, confidence={confidence_levels}, mode={mode}")
        logger.info(f"Model service state: is_loaded={model_service.is_loaded}, variant={model_service.model_variant}")

        forecast_result = model_service.predict(
            data=df,
            horizon=horizon,
            confidence_levels=confidence_levels
        )

        logger.info(f"Forecast result status: {forecast_result['status']}")

        if forecast_result['status'] == 'error':
            logger.error(f"βœ— Forecast generation failed: {forecast_result['error']}")
            return create_empty_chart(f"Forecast failed: {forecast_result['error']}"), '', {'display': 'none'}, ''

        # Get forecast data
        forecast_df = forecast_result['forecast']
        logger.info(f"Forecast DataFrame shape: {forecast_df.shape}, columns: {forecast_df.columns.tolist()}")

        # Decimate data if too large
        logger.info("Decimating data for chart...")
        historical_decimated = decimate_data(df, MAX_CHART_POINTS // 2)
        forecast_decimated = decimate_data(forecast_df, MAX_CHART_POINTS // 2)
        logger.info(f"Decimated - historical: {len(historical_decimated)}, forecast: {len(forecast_decimated)}")

        # Prepare data for chart (rename Chronos 2 columns to chart format)
        logger.info("Renaming columns for chart...")
        historical_for_chart = historical_decimated.rename(columns={
            'timestamp': 'ds',
            'target': 'y'
        })
        logger.info(f"Historical chart data columns: {historical_for_chart.columns.tolist()}")

        # Create chart title and labels based on target columns
        logger.info("Creating forecast chart...")
        primary_target = target_columns[0] if target_columns else 'Target'

        if mode == 'multivariate' and len(target_columns) > 1:
            chart_title = f"Forecast: {primary_target} (with {', '.join(target_columns[1:])} as covariates)"
            y_label = primary_target
        elif covariate_columns:
            chart_title = f"Forecast: {primary_target} (with covariates)"
            y_label = primary_target
        else:
            chart_title = f"Forecast: {primary_target}"
            y_label = primary_target

        fig = create_forecast_chart(
            historical_data=historical_for_chart,
            forecast_data=forecast_decimated,
            confidence_levels=confidence_levels,
            title=chart_title,
            y_axis_label=y_label,
            backtest_data=backtest_df
        )
        logger.info(f"Chart created: {type(fig)}")

        # Create metrics display
        metrics = {
            'inference_time': forecast_result['inference_time'],
            'data_points': len(df),
            'horizon': horizon
        }
        logger.info(f"Creating metrics display: {metrics}")

        # Add backtest metrics if available
        if backtest_metrics:
            metrics_components = dbc.Row([
                dbc.Col(create_metrics_display(metrics, forecast_result['inference_time']), md=6),
                dbc.Col(create_backtest_metrics_display(backtest_metrics), md=6)
            ])
        else:
            metrics_components = dbc.Row(create_metrics_display(
                metrics,
                forecast_result['inference_time']
            ))

        logger.info("βœ“ Forecast generation successful - returning chart and metrics")
        logger.info("CALLBACK: generate_forecast - EXIT (success)")
        logger.info("=" * 80)

        return fig, metrics_components, {'display': 'block'}, ''

    except Exception as e:
        logger.error(f"βœ— EXCEPTION in generate_forecast: {str(e)}", exc_info=True)
        logger.info("CALLBACK: generate_forecast - EXIT (exception)")
        logger.info("=" * 80)
        return create_empty_chart(f"Error: {str(e)}"), '', {'display': 'none'}, ''


# Health check endpoint
@app.server.route('/health')
def health_check():
    """Health check endpoint for deployment monitoring"""
    status = {
        'status': 'healthy' if model_service.is_loaded else 'degraded',
        'model_loaded': model_service.is_loaded,
        'model_variant': model_service.model_variant,
        'device': model_service.device
    }
    return status


# Run the app
if __name__ == '__main__':
    # Setup directories
    setup_directories()

    logger.info(f"Starting Chronos 2 Forecasting App")
    logger.info(f"Configuration: {CONFIG}")

    # Get host and port from environment variables (for HuggingFace Spaces, Render, etc.)
    import os
    host = os.getenv('HOST', '127.0.0.1')
    port = int(os.getenv('PORT', '7860'))  # 7860 is HuggingFace Spaces default
    debug = os.getenv('DEBUG', 'True').lower() == 'true'

    # Run the app
    app.run_server(
        host=host,
        port=port,
        debug=debug
    )