File size: 5,893 Bytes
6b9e3e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Forecast evaluation metrics
"""

import logging
from typing import Dict, Any
import numpy as np
import pandas as pd

logger = logging.getLogger(__name__)


def calculate_metrics(
    actual: pd.Series,
    forecast: pd.Series,
    include_percentage: bool = True
) -> Dict[str, float]:
    """
    Calculate forecast accuracy metrics

    Args:
        actual: Actual values
        forecast: Forecasted values
        include_percentage: Include percentage-based metrics

    Returns:
        Dictionary of metrics
    """
    try:
        # Ensure same length
        min_len = min(len(actual), len(forecast))
        actual = actual.iloc[:min_len].values
        forecast = forecast.iloc[:min_len].values

        # Remove NaN values
        mask = ~(np.isnan(actual) | np.isnan(forecast))
        actual = actual[mask]
        forecast = forecast[mask]

        if len(actual) == 0:
            return {'error': 'No valid values for metric calculation'}

        metrics = {}

        # Mean Absolute Error
        metrics['MAE'] = float(np.mean(np.abs(actual - forecast)))

        # Root Mean Squared Error
        metrics['RMSE'] = float(np.sqrt(np.mean((actual - forecast) ** 2)))

        # Mean Error (bias)
        metrics['ME'] = float(np.mean(forecast - actual))

        if include_percentage:
            # Mean Absolute Percentage Error
            # Avoid division by zero
            mask_nonzero = actual != 0
            if mask_nonzero.any():
                mape = np.mean(np.abs((actual[mask_nonzero] - forecast[mask_nonzero]) / actual[mask_nonzero])) * 100
                metrics['MAPE'] = float(mape)

            # Symmetric MAPE
            denominator = (np.abs(actual) + np.abs(forecast)) / 2
            mask_nonzero = denominator != 0
            if mask_nonzero.any():
                smape = np.mean(np.abs(actual[mask_nonzero] - forecast[mask_nonzero]) / denominator[mask_nonzero]) * 100
                metrics['sMAPE'] = float(smape)

        # R-squared
        ss_res = np.sum((actual - forecast) ** 2)
        ss_tot = np.sum((actual - np.mean(actual)) ** 2)
        if ss_tot != 0:
            metrics['R2'] = float(1 - (ss_res / ss_tot))

        return metrics

    except Exception as e:
        logger.error(f"Error calculating metrics: {str(e)}", exc_info=True)
        return {'error': str(e)}


def calculate_coverage(
    actual: pd.Series,
    lower_bound: pd.Series,
    upper_bound: pd.Series
) -> float:
    """
    Calculate coverage of prediction intervals

    Args:
        actual: Actual values
        lower_bound: Lower bound of prediction interval
        upper_bound: Upper bound of prediction interval

    Returns:
        Coverage percentage (0-100)
    """
    try:
        # Ensure same length
        min_len = min(len(actual), len(lower_bound), len(upper_bound))
        actual = actual.iloc[:min_len].values
        lower_bound = lower_bound.iloc[:min_len].values
        upper_bound = upper_bound.iloc[:min_len].values

        # Count values within bounds
        within_bounds = (actual >= lower_bound) & (actual <= upper_bound)
        coverage = np.mean(within_bounds) * 100

        return float(coverage)

    except Exception as e:
        logger.error(f"Error calculating coverage: {str(e)}", exc_info=True)
        return 0.0


def calculate_interval_width(
    lower_bound: pd.Series,
    upper_bound: pd.Series
) -> Dict[str, float]:
    """
    Calculate statistics about prediction interval width

    Args:
        lower_bound: Lower bound of prediction interval
        upper_bound: Upper bound of prediction interval

    Returns:
        Dictionary with width statistics
    """
    try:
        widths = upper_bound - lower_bound

        return {
            'mean_width': float(widths.mean()),
            'median_width': float(widths.median()),
            'min_width': float(widths.min()),
            'max_width': float(widths.max()),
            'std_width': float(widths.std())
        }

    except Exception as e:
        logger.error(f"Error calculating interval width: {str(e)}", exc_info=True)
        return {}


def format_metric(value: float, metric_name: str) -> str:
    """
    Format metric value for display

    Args:
        value: Metric value
        metric_name: Name of the metric

    Returns:
        Formatted string
    """
    if metric_name in ['MAPE', 'sMAPE', 'R2']:
        return f"{value:.2f}%"
    elif metric_name in ['MAE', 'RMSE', 'ME']:
        if abs(value) >= 1000:
            return f"{value:,.2f}"
        else:
            return f"{value:.4f}"
    else:
        return f"{value:.4f}"


def summarize_forecast_quality(
    forecast_df: pd.DataFrame,
    confidence_levels: list
) -> Dict[str, Any]:
    """
    Summarize the quality of a forecast

    Args:
        forecast_df: DataFrame with forecast results
        confidence_levels: List of confidence levels

    Returns:
        Summary dictionary
    """
    try:
        summary = {
            'horizon': len(forecast_df),
            'forecast_range': {
                'min': float(forecast_df['forecast'].min()),
                'max': float(forecast_df['forecast'].max()),
                'mean': float(forecast_df['forecast'].mean())
            }
        }

        # Analyze interval widths for each confidence level
        interval_widths = {}
        for cl in confidence_levels:
            lower_col = f'lower_{cl}'
            upper_col = f'upper_{cl}'

            if lower_col in forecast_df.columns and upper_col in forecast_df.columns:
                width = (forecast_df[upper_col] - forecast_df[lower_col]).mean()
                interval_widths[f'{cl}%'] = float(width)

        summary['interval_widths'] = interval_widths

        return summary

    except Exception as e:
        logger.error(f"Error summarizing forecast: {str(e)}", exc_info=True)
        return {}