Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- app.py +247 -0
- finetunebert/config.json +47 -0
- finetunebert/pytorch_model.bin +3 -0
- finetunebert/special_tokens_map.json +7 -0
- finetunebert/tokenizer_config.json +19 -0
- finetunebert/vocab.txt +0 -0
- pipe_v1_natasha.joblib +3 -0
- preprocessing.py +55 -0
app.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import re
|
| 3 |
+
import string
|
| 4 |
+
|
| 5 |
+
import docx2txt
|
| 6 |
+
import fitz
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import joblib
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import nltk
|
| 11 |
+
import seaborn as sns
|
| 12 |
+
import shap
|
| 13 |
+
import textract
|
| 14 |
+
import torch
|
| 15 |
+
from lime.lime_text import LimeTextExplainer
|
| 16 |
+
from striprtf.striprtf import rtf_to_text
|
| 17 |
+
from transformers import BertForSequenceClassification, BertTokenizer, pipeline
|
| 18 |
+
|
| 19 |
+
from preprocessing import TextCleaner
|
| 20 |
+
|
| 21 |
+
cleaner = TextCleaner()
|
| 22 |
+
pipe = joblib.load('pipe_v1_natasha.joblib')
|
| 23 |
+
|
| 24 |
+
model_path = "finetunebert"
|
| 25 |
+
tokenizer = BertTokenizer.from_pretrained(model_path,
|
| 26 |
+
padding='max_length',
|
| 27 |
+
truncation=True)
|
| 28 |
+
# tokenizer.init_kwargs["model_max_length"] = 512
|
| 29 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
| 30 |
+
document_classifier = pipeline("text-classification",
|
| 31 |
+
model=model,
|
| 32 |
+
tokenizer=tokenizer,
|
| 33 |
+
return_all_scores=True)
|
| 34 |
+
|
| 35 |
+
classes = [
|
| 36 |
+
"Договоры поставки", "Договоры оказания услуг", "Договоры подряда",
|
| 37 |
+
"Договоры аренды", "Договоры купли-продажи"
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def old__pipeline(text):
|
| 42 |
+
clean_text = text_preprocessing(text)
|
| 43 |
+
tokens = tokenizer.batch_encode_plus([clean_text],
|
| 44 |
+
max_length=512,
|
| 45 |
+
padding=True,
|
| 46 |
+
truncation=True)
|
| 47 |
+
item = {k: torch.tensor(v) for k, v in tokens.items()}
|
| 48 |
+
preds = model(**item).logits.detach()
|
| 49 |
+
preds = torch.softmax(preds, dim=1)[0]
|
| 50 |
+
output = [{
|
| 51 |
+
'label': cls,
|
| 52 |
+
'score': score
|
| 53 |
+
} for cls, score in zip(classes, preds)]
|
| 54 |
+
|
| 55 |
+
return output
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def read_doc(file_obj):
|
| 59 |
+
"""Read file
|
| 60 |
+
:param file_obj: file object
|
| 61 |
+
:return: string
|
| 62 |
+
"""
|
| 63 |
+
text = read_file(file_obj)
|
| 64 |
+
return text
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def read_docv2(file_obj):
|
| 68 |
+
"""Read file and collect neighbour for visual output
|
| 69 |
+
:param file_obj: file object
|
| 70 |
+
:return: string
|
| 71 |
+
"""
|
| 72 |
+
text = read_file(file_obj)
|
| 73 |
+
explainer = LimeTextExplainer(class_names=classes)
|
| 74 |
+
text = cleaner.execute(text)
|
| 75 |
+
exp = explainer.explain_instance(text,
|
| 76 |
+
pipe.predict_proba,
|
| 77 |
+
num_features=10,
|
| 78 |
+
labels=[0, 1, 2, 3, 4])
|
| 79 |
+
scores = exp.as_list()
|
| 80 |
+
scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
|
| 81 |
+
selected_words = [word[0] for word in scores_desc]
|
| 82 |
+
sent = text.split()
|
| 83 |
+
indices = [i for i, word in enumerate(sent) if word in selected_words]
|
| 84 |
+
neighbors = []
|
| 85 |
+
for ind in indices:
|
| 86 |
+
neighbors.append(" ".join(sent[max(0, ind - 3):min(ind +
|
| 87 |
+
3, len(sent))]))
|
| 88 |
+
return "\n\n".join(neighbors)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def classifier(file_obj):
|
| 92 |
+
"""Classify
|
| 93 |
+
:param file_obj: file object
|
| 94 |
+
:return: Dict[str, int]
|
| 95 |
+
"""
|
| 96 |
+
text = read_file(file_obj)
|
| 97 |
+
clean_text = text_preprocessing(text)
|
| 98 |
+
tokens = tokenizer.batch_encode_plus([clean_text],
|
| 99 |
+
max_length=512,
|
| 100 |
+
padding=True,
|
| 101 |
+
truncation=True)
|
| 102 |
+
item = {k: torch.tensor(v) for k, v in tokens.items()}
|
| 103 |
+
preds = model(**item).logits.detach()
|
| 104 |
+
preds = torch.softmax(preds, dim=1)[0]
|
| 105 |
+
return {cls: p.item() for cls, p in zip(classes, preds)}
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def clean_text(text):
|
| 109 |
+
"""Make text lowercase, remove text in square brackets,remove links,remove punctuation
|
| 110 |
+
and remove words containing numbers."""
|
| 111 |
+
text = text.lower()
|
| 112 |
+
text = re.sub('\[.*?\]', '', text)
|
| 113 |
+
text = re.sub('https?://\S+|www\.\S+', '', text)
|
| 114 |
+
text = re.sub('<.*?>+', '', text)
|
| 115 |
+
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
|
| 116 |
+
text = re.sub('\n', '', text)
|
| 117 |
+
text = re.sub('\w*\d\w*', '', text)
|
| 118 |
+
return text
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def text_preprocessing(text):
|
| 122 |
+
"""Cleaning and parsing the text."""
|
| 123 |
+
tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+')
|
| 124 |
+
nopunc = clean_text(text)
|
| 125 |
+
tokenized_text = tokenizer.tokenize(nopunc)
|
| 126 |
+
#remove_stopwords = [w for w in tokenized_text if w not in stopwords.words('english')]
|
| 127 |
+
combined_text = ' '.join(tokenized_text)
|
| 128 |
+
return combined_text
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def read_file(file_obj):
|
| 132 |
+
"""Read file and fixing encoding
|
| 133 |
+
:param file_obj: file object
|
| 134 |
+
:return: string
|
| 135 |
+
"""
|
| 136 |
+
if isinstance(file_obj, list):
|
| 137 |
+
file_obj = file_obj[0]
|
| 138 |
+
filename = file_obj.name
|
| 139 |
+
if filename.endswith("docx"):
|
| 140 |
+
text = docx2txt.process(filename)
|
| 141 |
+
elif filename.endswith("pdf"):
|
| 142 |
+
doc = fitz.open(filename)
|
| 143 |
+
text = []
|
| 144 |
+
for page in doc:
|
| 145 |
+
text.append(page.get_text())
|
| 146 |
+
text = " ".join(text)
|
| 147 |
+
elif filename.endswith("doc"):
|
| 148 |
+
text = reinterpret(textract.process(filename))
|
| 149 |
+
text = remove_convert_info(text)
|
| 150 |
+
elif filename.endswith("rtf"):
|
| 151 |
+
with open(filename) as f:
|
| 152 |
+
content = f.read()
|
| 153 |
+
text = rtf_to_text(content)
|
| 154 |
+
else:
|
| 155 |
+
return {"text": []}
|
| 156 |
+
return text
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def reinterpret(text: str):
|
| 160 |
+
return text.decode('utf8')
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def remove_convert_info(text: str):
|
| 164 |
+
for i, s in enumerate(text):
|
| 165 |
+
if s == ":":
|
| 166 |
+
break
|
| 167 |
+
return text[i + 6:]
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def plot_weights(file_obj):
|
| 171 |
+
text = read_file(file_obj)
|
| 172 |
+
explainer = LimeTextExplainer(class_names=classes)
|
| 173 |
+
text = cleaner.execute(text)
|
| 174 |
+
exp = explainer.explain_instance(text,
|
| 175 |
+
pipe.predict_proba,
|
| 176 |
+
num_features=10,
|
| 177 |
+
labels=[0, 1, 2, 3, 4])
|
| 178 |
+
scores = exp.as_list()
|
| 179 |
+
scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
|
| 180 |
+
plt.rcParams.update({'font.size': 35})
|
| 181 |
+
fig = plt.figure(figsize=(20, 20))
|
| 182 |
+
sns.barplot(x=[s[0] for s in scores_desc[:10]],
|
| 183 |
+
y=[s[1] for s in scores_desc[:10]])
|
| 184 |
+
plt.title("Top words contributing to positive sentiment")
|
| 185 |
+
plt.ylabel("Weight")
|
| 186 |
+
plt.xlabel("Word")
|
| 187 |
+
plt.title("Interpreting text predictions with LIME")
|
| 188 |
+
plt.xticks(rotation=20)
|
| 189 |
+
plt.tight_layout()
|
| 190 |
+
return fig
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def interpretation_function(file_obj):
|
| 194 |
+
text = read_file(file_obj)
|
| 195 |
+
clean_text = text_preprocessing(text)
|
| 196 |
+
explainer = shap.Explainer(document_classifier)
|
| 197 |
+
shap_values = explainer([clean_text])
|
| 198 |
+
|
| 199 |
+
# Dimensions are (batch size, text size, number of classes)
|
| 200 |
+
# Since we care about positive sentiment, use index 1
|
| 201 |
+
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
| 202 |
+
# Scores contains (word, score) pairs
|
| 203 |
+
# Format expected by gr.components.Interpretation
|
| 204 |
+
return {"original": clean_text, "interpretation": scores}
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def as_pyplot_figure(file_obj):
|
| 208 |
+
text = read_file(file_obj)
|
| 209 |
+
explainer = LimeTextExplainer(class_names=classes)
|
| 210 |
+
text = cleaner.execute(text)
|
| 211 |
+
exp = explainer.explain_instance(text,
|
| 212 |
+
pipe.predict_proba,
|
| 213 |
+
num_features=10,
|
| 214 |
+
labels=[0, 1, 2, 3, 4])
|
| 215 |
+
buf = io.BytesIO()
|
| 216 |
+
fig = exp.as_pyplot_figure()
|
| 217 |
+
fig.tight_layout()
|
| 218 |
+
plt.rcParams.update({'font.size': 10})
|
| 219 |
+
plt.savefig(buf)
|
| 220 |
+
buf.seek(0)
|
| 221 |
+
return fig
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
with gr.Blocks() as demo:
|
| 225 |
+
gr.Markdown("""**Document classification**""")
|
| 226 |
+
with gr.Row():
|
| 227 |
+
with gr.Column():
|
| 228 |
+
file = gr.File(label="Input File")
|
| 229 |
+
with gr.Row():
|
| 230 |
+
classify = gr.Button("Classify document")
|
| 231 |
+
read = gr.Button("Get text")
|
| 232 |
+
interpret_lime = gr.Button("Interpret LIME")
|
| 233 |
+
interpret_shap = gr.Button("Interpret SHAP")
|
| 234 |
+
with gr.Column():
|
| 235 |
+
label = gr.Label(label="Predicted Document Class")
|
| 236 |
+
plot = gr.Plot()
|
| 237 |
+
with gr.Column():
|
| 238 |
+
text = gr.Text(label="Selected keywords")
|
| 239 |
+
with gr.Column():
|
| 240 |
+
interpretation = gr.components.Interpretation(text)
|
| 241 |
+
classify.click(classifier, file, label)
|
| 242 |
+
read.click(read_docv2, file, [text])
|
| 243 |
+
interpret_shap.click(interpretation_function, file, interpretation)
|
| 244 |
+
interpret_lime.click(as_pyplot_figure, file, plot)
|
| 245 |
+
|
| 246 |
+
if __name__ == "__main__":
|
| 247 |
+
demo.launch(share=True)
|
finetunebert/config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "DeepPavlov/rubert-base-cased-sentence",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"directionality": "bidi",
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "Договоры_поставки",
|
| 14 |
+
"1": "Договоры_оказания_услуг",
|
| 15 |
+
"2": "Договоры_подряда",
|
| 16 |
+
"3": "Договоры_аренды",
|
| 17 |
+
"4": "Договоры_купли_продажи"
|
| 18 |
+
},
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 3072,
|
| 21 |
+
"label2id": {
|
| 22 |
+
"Договоры_поставки": 0,
|
| 23 |
+
"Договоры_оказания_услуг": 1,
|
| 24 |
+
"Договоры_подряда": 2,
|
| 25 |
+
"Договоры_аренды": 3,
|
| 26 |
+
"Договоры_купли_продажи": 4
|
| 27 |
+
},
|
| 28 |
+
"layer_norm_eps": 1e-12,
|
| 29 |
+
"max_position_embeddings": 512,
|
| 30 |
+
"model_type": "bert",
|
| 31 |
+
"num_attention_heads": 12,
|
| 32 |
+
"num_hidden_layers": 12,
|
| 33 |
+
"output_past": true,
|
| 34 |
+
"pad_token_id": 0,
|
| 35 |
+
"pooler_fc_size": 768,
|
| 36 |
+
"pooler_num_attention_heads": 12,
|
| 37 |
+
"pooler_num_fc_layers": 3,
|
| 38 |
+
"pooler_size_per_head": 128,
|
| 39 |
+
"pooler_type": "first_token_transform",
|
| 40 |
+
"position_embedding_type": "absolute",
|
| 41 |
+
"problem_type": "single_label_classification",
|
| 42 |
+
"torch_dtype": "float32",
|
| 43 |
+
"transformers_version": "4.25.1",
|
| 44 |
+
"type_vocab_size": 2,
|
| 45 |
+
"use_cache": true,
|
| 46 |
+
"vocab_size": 119547
|
| 47 |
+
}
|
finetunebert/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62cab11907d1a4647b4060ea92dc23a4637efb0de1ee5f787e0f87263a6d0e25
|
| 3 |
+
size 711501941
|
finetunebert/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
finetunebert/tokenizer_config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": false,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"use_fast": true,
|
| 7 |
+
"model_max_length": 512,
|
| 8 |
+
"padding_side": "right",
|
| 9 |
+
"truncation_side": "left",
|
| 10 |
+
"name_or_path": "DeepPavlov/rubert-base-cased-sentence",
|
| 11 |
+
"never_split": null,
|
| 12 |
+
"pad_token": "[PAD]",
|
| 13 |
+
"sep_token": "[SEP]",
|
| 14 |
+
"special_tokens_map_file": "/home/xrenya/.cache/huggingface/hub/models--DeepPavlov--rubert-base-cased-sentence/snapshots/78b5122d6365337dd4114281b0d08cd1edbb3bc8/special_tokens_map.json",
|
| 15 |
+
"strip_accents": null,
|
| 16 |
+
"tokenize_chinese_chars": true,
|
| 17 |
+
"tokenizer_class": "BertTokenizer",
|
| 18 |
+
"unk_token": "[UNK]"
|
| 19 |
+
}
|
finetunebert/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pipe_v1_natasha.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5bd8acea272a9df1c44a2a0d8e9f50d315691b6bf11a7c14e83fb5d35f1d94ba
|
| 3 |
+
size 265645
|
preprocessing.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
|
| 3 |
+
import nltk
|
| 4 |
+
from natasha import (Doc, MorphVocab, NamesExtractor, NewsEmbedding,
|
| 5 |
+
NewsMorphTagger, NewsNERTagger, NewsSyntaxParser,
|
| 6 |
+
Segmenter)
|
| 7 |
+
from nltk.corpus import stopwords
|
| 8 |
+
|
| 9 |
+
nltk.download('stopwords')
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TextCleaner:
|
| 13 |
+
|
| 14 |
+
def __init__(self, lemma: bool = True):
|
| 15 |
+
self.lemma = lemma
|
| 16 |
+
self.segmenter = Segmenter()
|
| 17 |
+
self.morph_vocab = MorphVocab()
|
| 18 |
+
emb = NewsEmbedding()
|
| 19 |
+
self.morph_tagger = NewsMorphTagger(emb)
|
| 20 |
+
syntax_parser = NewsSyntaxParser(emb)
|
| 21 |
+
ner_tagger = NewsNERTagger(emb)
|
| 22 |
+
names_extractor = NamesExtractor(self.morph_vocab)
|
| 23 |
+
self.en_stops = stopwords.words('english')
|
| 24 |
+
self.ru_stops = stopwords.words('russian')
|
| 25 |
+
self.punc = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
|
| 26 |
+
self.words_pattern = '[а-я]+'
|
| 27 |
+
|
| 28 |
+
def execute(self, text):
|
| 29 |
+
text = self.text_preprocessing(text)
|
| 30 |
+
if self.lemma:
|
| 31 |
+
text = self.lemmatize(text)
|
| 32 |
+
return text
|
| 33 |
+
|
| 34 |
+
def text_preprocessing(self, data):
|
| 35 |
+
data = " ".join(x.lower() for x in data.split())
|
| 36 |
+
data = data.replace('[^\w\s]', '')
|
| 37 |
+
data = " ".join(x for x in data.split()
|
| 38 |
+
if x not in self.ru_stops and x not in self.en_stops)
|
| 39 |
+
for punc in self.punc:
|
| 40 |
+
if punc in data:
|
| 41 |
+
data = data.replace(punc, "")
|
| 42 |
+
data = re.sub(' +', ' ', data)
|
| 43 |
+
return " ".join(
|
| 44 |
+
re.findall(self.words_pattern, data, flags=re.IGNORECASE))
|
| 45 |
+
|
| 46 |
+
def lemmatize(self, text):
|
| 47 |
+
doc = Doc(text)
|
| 48 |
+
doc.segment(self.segmenter)
|
| 49 |
+
doc.tag_morph(self.morph_tagger)
|
| 50 |
+
for token in doc.tokens:
|
| 51 |
+
token.lemmatize(self.morph_vocab)
|
| 52 |
+
tokens = []
|
| 53 |
+
for token in doc.tokens:
|
| 54 |
+
tokens.append(token.lemma)
|
| 55 |
+
return " ".join(tokens)
|