/* WebGPU backend implementation. Note: Use ClangFormat to format this file. */ #include "ggml-webgpu.h" #include "ggml-backend-impl.h" #include "ggml-impl.h" #include "ggml-wgsl-shaders.hpp" #include #include #include #include #include #include #include #ifdef GGML_WEBGPU_DEBUG # define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl # define WEBGPU_DEBUG_BUF_ELEMS 32 #else # define WEBGPU_LOG_DEBUG(msg) ((void) 0) #endif // GGML_WEBGPU_DEBUG /* Constants */ #define WEBGPU_COMMAND_SUBMIT_BATCH_SIZE 16 #define WEBGPU_MUL_MAT_WG_SIZE 64 #define WEBGPU_NUM_PARAM_BUFS 100 #define WEBGPU_PARAMS_BUF_SIZE_BYTES 128 // enough for 32 parameters #define WEBGPU_NUM_SET_ROWS_ERROR_BUFS 32 #define WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES 4 #define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4 /* End Constants */ // This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations. static void * const webgpu_ptr_base = (void *) (uintptr_t) 0x1000; // NOLINT // Always returns the base offset of a tensor, regardless of views. static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) { if (tensor->view_src) { return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base; } return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base; } /* Struct definitions */ // Forward reference static void ggml_webgpu_create_buffer(wgpu::Device & device, wgpu::Buffer & buffer, size_t size, wgpu::BufferUsage usage, const char * label); struct webgpu_pool_bufs { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; }; // Holds a pool of parameter buffers for WebGPU operations struct webgpu_buf_pool { std::vector free; std::mutex mutex; std::condition_variable cv; void init(wgpu::Device device, int num_bufs, size_t buf_size, wgpu::BufferUsage dev_buf_usage, wgpu::BufferUsage host_buf_usage) { for (int i = 0; i < num_bufs; i++) { wgpu::Buffer host_buf; wgpu::Buffer dev_buf; ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_pool_buf"); ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_pool_buf"); free.push_back({ host_buf, dev_buf }); } } webgpu_pool_bufs alloc_bufs() { std::unique_lock lock(mutex); cv.wait(lock, [this] { return !free.empty(); }); webgpu_pool_bufs bufs = free.back(); free.pop_back(); return bufs; } void free_bufs(std::vector bufs) { std::lock_guard lock(mutex); free.insert(free.end(), bufs.begin(), bufs.end()); cv.notify_all(); } void cleanup() { std::lock_guard lock(mutex); for (auto & bufs : free) { bufs.host_buf.Destroy(); bufs.dev_buf.Destroy(); } free.clear(); } }; // All the base objects needed to run operations on a WebGPU device struct webgpu_context_struct { wgpu::Instance instance; wgpu::Adapter adapter; wgpu::Device device; wgpu::Queue queue; wgpu::Limits limits; std::recursive_mutex mutex; bool device_init = false; webgpu_buf_pool param_buf_pool; webgpu_buf_pool set_rows_error_buf_pool; wgpu::ComputePipeline memset_pipeline; wgpu::ComputePipeline mul_mat_pipeline; wgpu::ComputePipeline set_rows_pipeline; wgpu::ComputePipeline cpy_pipeline; size_t memset_bytes_per_thread; // Staging buffer for reading data from the GPU wgpu::Buffer get_tensor_staging_buf; // Command buffers which need to be submitted std::vector staged_command_bufs; // Parameter buffers associated with the staged command buffers std::vector staged_param_bufs; // Buffers associated with set_rows operations, used to store potential errors std::vector staged_set_row_error_bufs; std::vector callback_futures; #ifdef GGML_WEBGPU_DEBUG wgpu::Buffer debug_host_buf; wgpu::Buffer debug_dev_buf; #endif }; typedef std::shared_ptr webgpu_context; struct ggml_backend_webgpu_reg_context { webgpu_context webgpu_ctx; size_t device_count; const char * name; }; struct ggml_backend_webgpu_device_context { webgpu_context webgpu_ctx; std::string device_name; std::string device_desc; }; struct ggml_backend_webgpu_context { webgpu_context webgpu_ctx; std::string name; }; struct ggml_backend_webgpu_buffer_context { webgpu_context webgpu_ctx; wgpu::Buffer buffer; ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf) : webgpu_ctx(std::move(ctx)), buffer(std::move(buf)) {} }; /* End struct definitions */ /* WebGPU object initializations */ static void ggml_webgpu_create_pipeline(wgpu::Device & device, wgpu::ComputePipeline & pipeline, const char * shader_code, const char * label, const std::vector & constants = {}) { WEBGPU_LOG_DEBUG("ggml_webgpu_create_pipeline()"); wgpu::ShaderSourceWGSL shader_source; shader_source.code = shader_code; wgpu::ShaderModuleDescriptor shader_desc; shader_desc.nextInChain = &shader_source; wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc); wgpu::ComputePipelineDescriptor pipeline_desc; pipeline_desc.label = label; pipeline_desc.compute.module = shader_module; pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code pipeline_desc.layout = nullptr; // nullptr means auto layout if (constants.size() > 0) { pipeline_desc.compute.constants = constants.data(); pipeline_desc.compute.constantCount = constants.size(); } pipeline = device.CreateComputePipeline(&pipeline_desc); } static void ggml_webgpu_create_buffer(wgpu::Device & device, wgpu::Buffer & buffer, size_t size, wgpu::BufferUsage usage, const char * label) { WEBGPU_LOG_DEBUG("ggml_webgpu_create_buffer()"); wgpu::BufferDescriptor buffer_desc; buffer_desc.size = size; buffer_desc.usage = usage; buffer_desc.label = label; buffer_desc.mappedAtCreation = false; // TODO: error handling buffer = device.CreateBuffer(&buffer_desc); } /** End WebGPU object initializations */ /** WebGPU Actions */ // Wait for the queue to finish processing all submitted work static void ggml_backend_webgpu_wait_on_submission(webgpu_context & ctx) { std::lock_guard lock(ctx->mutex); if (ctx->callback_futures.empty()) { // no existing callbacks, wait on queue submission ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone( wgpu::CallbackMode::AllowSpontaneous, [](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) { if (status != wgpu::QueueWorkDoneStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", message.data); } }), UINT64_MAX); } else { // existing callbacks, wait on them ctx->instance.WaitAny(ctx->callback_futures.size(), ctx->callback_futures.data(), UINT64_MAX); ctx->callback_futures.clear(); } } static void ggml_backend_webgpu_submit_queue(webgpu_context & ctx) { std::lock_guard lock(ctx->mutex); WEBGPU_LOG_DEBUG("ggml_backend_webgpu_submit_queue()"); if (ctx->staged_command_bufs.empty()) { // Nothing to submit return; } ctx->queue.Submit(ctx->staged_command_bufs.size(), ctx->staged_command_bufs.data()); // If there are SET_ROWS operations in this submission, copy their error buffers to the host. if (ctx->staged_set_row_error_bufs.size() > 0) { wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder(); for (auto & error_bufs : ctx->staged_set_row_error_bufs) { // Copy the error buffer to the host buffer encoder.CopyBufferToBuffer(error_bufs.dev_buf, 0, error_bufs.host_buf, 0, error_bufs.host_buf.GetSize()); } wgpu::CommandBuffer commands = encoder.Finish(); ctx->queue.Submit(1, &commands); } ctx->staged_command_bufs.clear(); std::vector staged_param_bufs = std::move(ctx->staged_param_bufs); std::vector staged_set_row_error_bufs = std::move(ctx->staged_set_row_error_bufs); // Free the staged parameter buffers once the submission completes wgpu::Future p_f = ctx->queue.OnSubmittedWorkDone( wgpu::CallbackMode::AllowSpontaneous, [ctx, staged_param_bufs](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) { if (status != wgpu::QueueWorkDoneStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", message.data); } // Free the staged buffers ctx->param_buf_pool.free_bufs(staged_param_bufs); }); ctx->callback_futures.push_back({ p_f }); // Check for errrors in SET_ROWS operations for (auto & error_bufs : staged_set_row_error_bufs) { wgpu::Future f = error_bufs.host_buf.MapAsync( wgpu::MapMode::Read, 0, error_bufs.host_buf.GetSize(), wgpu::CallbackMode::AllowSpontaneous, [ctx, error_bufs](wgpu::MapAsyncStatus status, wgpu::StringView message) { if (status != wgpu::MapAsyncStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to map error buffer: %s\n", message.data); } else { const uint32_t * error_data = (const uint32_t *) error_bufs.host_buf.GetConstMappedRange(); if (*error_data) { GGML_ABORT("ggml_webgpu: SET_ROWS index > 2^32, unsupported."); } // We can't unmap in here due to WebGPU reentrancy limitations. ctx->set_rows_error_buf_pool.free_bufs({ error_bufs }); } }); ctx->callback_futures.push_back({ f }); } } static void ggml_backend_webgpu_map_buffer(webgpu_context & ctx, wgpu::Buffer & buffer, wgpu::MapMode mode, size_t offset, size_t size) { ctx->instance.WaitAny(buffer.MapAsync(mode, offset, size, wgpu::CallbackMode::AllowSpontaneous, [](wgpu::MapAsyncStatus status, wgpu::StringView message) { if (status != wgpu::MapAsyncStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n", message.data); } }), UINT64_MAX); } #ifdef GGML_WEBGPU_DEBUG // This function adds debugging information to shaders, as WebGPU does not support printing directly. // To use, add a bind group entry to the setup for the shader you are debugging, add the buffer and // debug statements in the shader, and then call this function after encoding the commands and submitting them. static void ggml_backend_webgpu_debug(webgpu_context & ctx) { wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize()); wgpu::CommandBuffer commands = encoder.Finish(); ctx->queue.Submit(1, &commands); ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize()); const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange(); std::cout << "debug data:"; for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) { std::cout << " " << i << ": " << debug_data[i]; } std::cout << "\n"; ctx->debug_host_buf.Unmap(); } #endif static void ggml_backend_webgpu_build_and_enqueue(webgpu_context & ctx, wgpu::ComputePipeline & pipeline, std::vector params, std::vector bind_group_entries, uint32_t wg_x, bool submit_and_wait = false) { webgpu_pool_bufs params_bufs = ctx->param_buf_pool.alloc_bufs(); ggml_backend_webgpu_map_buffer(ctx, params_bufs.host_buf, wgpu::MapMode::Write, 0, params_bufs.host_buf.GetSize()); uint32_t * _params = (uint32_t *) params_bufs.host_buf.GetMappedRange(); for (size_t i = 0; i < params.size(); i++) { _params[i] = params[i]; }; params_bufs.host_buf.Unmap(); uint32_t params_bufs_binding_num = bind_group_entries.size(); bind_group_entries.push_back({ .binding = params_bufs_binding_num, .buffer = params_bufs.dev_buf, .offset = 0, .size = params_bufs.dev_buf.GetSize() }); wgpu::BindGroupDescriptor bind_group_desc; bind_group_desc.layout = pipeline.GetBindGroupLayout(0); bind_group_desc.entryCount = bind_group_entries.size(); bind_group_desc.entries = bind_group_entries.data(); wgpu::BindGroup bind_group = ctx->device.CreateBindGroup(&bind_group_desc); wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(params_bufs.host_buf, 0, params_bufs.dev_buf, 0, params_bufs.dev_buf.GetSize()); wgpu::ComputePassEncoder pass = encoder.BeginComputePass(); pass.SetPipeline(pipeline); pass.SetBindGroup(0, bind_group); pass.DispatchWorkgroups(wg_x, 1, 1); pass.End(); wgpu::CommandBuffer commands = encoder.Finish(); if (submit_and_wait) { // Submit and wait immediately ctx->queue.Submit(1, &commands); ctx->instance.WaitAny(ctx->queue.OnSubmittedWorkDone( wgpu::CallbackMode::AllowSpontaneous, [ctx, params_bufs](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) { if (status != wgpu::QueueWorkDoneStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", message.data); } ctx->param_buf_pool.free_bufs({ params_bufs }); }), UINT64_MAX); } else { // Lock the context mutex when pushing to the staging vectors. std::lock_guard lock(ctx->mutex); // Enqueue commands and only submit if we have enough staged commands ctx->staged_command_bufs.push_back(commands); ctx->staged_param_bufs.push_back(params_bufs); if (ctx->staged_command_bufs.size() == WEBGPU_COMMAND_SUBMIT_BATCH_SIZE) { ggml_backend_webgpu_submit_queue(ctx); } } } static void ggml_backend_webgpu_buffer_memset(webgpu_context & ctx, wgpu::Buffer & buf, uint32_t value, size_t offset, size_t size) { std::vector params = { (uint32_t) offset, (uint32_t) size, value }; std::vector entries = { { .binding = 0, .buffer = buf, .offset = 0, .size = buf.GetSize() } }; size_t bytes_per_wg = ctx->limits.maxComputeWorkgroupSizeX * ctx->memset_bytes_per_thread; uint32_t wg_x = ((size + 3) + bytes_per_wg - 1) / bytes_per_wg; ggml_backend_webgpu_build_and_enqueue(ctx, ctx->memset_pipeline, params, entries, wg_x, true); } static size_t ggml_backend_webgpu_tensor_offset(const ggml_tensor * tensor) { return webgpu_tensor_offset(tensor) + tensor->view_offs; } static wgpu::Buffer ggml_backend_webgpu_tensor_buf(const ggml_tensor * tensor) { ggml_backend_webgpu_buffer_context * ctx = (ggml_backend_webgpu_buffer_context *) tensor->buffer->context; return ctx->buffer; } /** End WebGPU Actions */ /** GGML Backend Interface */ static const char * ggml_backend_webgpu_name(ggml_backend_t backend) { ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context; return ctx->name.c_str(); } static void ggml_backend_webgpu_free(ggml_backend_t backend) { ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context; WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")"); // TODO: cleanup GGML_UNUSED(ctx); } static void ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { size_t src_offset = ggml_backend_webgpu_tensor_offset(src); // assumes power of 2 offset alignment size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); // align to minimum offset alignment src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1); size_t dst_offset = ggml_backend_webgpu_tensor_offset(dst); size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1); uint32_t ne = (uint32_t) ggml_nelements(dst); std::vector params = { ne, (uint32_t) (src_misalignment / ggml_type_size(src->type)), (uint32_t) (dst_misalignment / ggml_type_size(dst->type)), // Convert byte-strides to element-strides (uint32_t) (src->nb[0] / ggml_type_size(src->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (dst->nb[0] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), // Logical shape — same for both tensors even if permuted (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3] }; std::vector entries = { { .binding = 0, .buffer = ggml_backend_webgpu_tensor_buf(src), .offset = src_offset, .size = (ggml_nbytes(src) + src_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1) }, { .binding = 1, .buffer = ggml_backend_webgpu_tensor_buf(dst), .offset = dst_offset, .size = (ggml_nbytes(dst) + dst_misalignment + WEBGPU_STORAGE_BUF_BINDING_MULT - 1) & ~(WEBGPU_STORAGE_BUF_BINDING_MULT - 1) } }; size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX; uint32_t wg_x = (ne + max_wg_size - 1) / max_wg_size; ggml_backend_webgpu_build_and_enqueue(ctx, ctx->cpy_pipeline, params, entries, wg_x); } static void ggml_webgpu_set_rows(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * idx, ggml_tensor * dst) { // For set rows specifically, we need to check if src and idx are empty tensors. if (ggml_is_empty(src) || ggml_is_empty(idx)) { return; } webgpu_pool_bufs error_bufs = ctx->set_rows_error_buf_pool.alloc_bufs(); if (error_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) { error_bufs.host_buf.Unmap(); } size_t src_offset = ggml_backend_webgpu_tensor_offset(src); // assumes power of 2 offset alignment size_t src_misalignment = src_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); // align to minimum offset alignment src_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1); size_t idx_offset = ggml_backend_webgpu_tensor_offset(idx); size_t idx_misalignment = idx_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); idx_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1); size_t dst_offset = ggml_backend_webgpu_tensor_offset(dst); size_t dst_misalignment = dst_offset & (ctx->limits.minStorageBufferOffsetAlignment - 1); dst_offset &= ~(ctx->limits.minStorageBufferOffsetAlignment - 1); std::vector params = { (uint32_t) (src_misalignment / ggml_type_size(src->type)), (uint32_t) (idx_misalignment / ggml_type_size(idx->type)), (uint32_t) (dst_misalignment / ggml_type_size(dst->type)), // Convert byte-strides to element-strides (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (idx->nb[0] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[1] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[2] / ggml_type_size(idx->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)), // Shape of src (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3], // Shape of idx (uint32_t) (idx->ne[1]), (uint32_t) (idx->ne[2]) }; std::vector entries = { { .binding = 0, .buffer = ggml_backend_webgpu_tensor_buf(src), .offset = ggml_backend_webgpu_tensor_offset(src), .size = ggml_nbytes(src) }, { .binding = 1, .buffer = ggml_backend_webgpu_tensor_buf(idx), .offset = ggml_backend_webgpu_tensor_offset(idx), .size = ggml_nbytes(idx) }, { .binding = 2, .buffer = ggml_backend_webgpu_tensor_buf(dst), .offset = ggml_backend_webgpu_tensor_offset(dst), .size = ggml_nbytes(dst) }, { .binding = 3, .buffer = error_bufs.dev_buf, .offset = 0, .size = error_bufs.dev_buf.GetSize() } }; size_t max_wg_size = ctx->limits.maxComputeWorkgroupSizeX; uint32_t wg_x = (src->ne[1] * src->ne[2] * src->ne[3] + max_wg_size - 1) / max_wg_size; std::lock_guard lock(ctx->mutex); ctx->staged_set_row_error_bufs.push_back(error_bufs); ggml_backend_webgpu_build_and_enqueue(ctx, ctx->set_rows_pipeline, params, entries, wg_x); } static void ggml_webgpu_mul_mat(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) { std::vector params = { (uint32_t) dst->ne[1], // number of rows in result (M) (uint32_t) dst->ne[0], // number of columns in result (N) (uint32_t) src0->ne[0], // number of columns in src0/src1 (K) (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), // stride (elements) of src0 in dimension 1 (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)), // stride (elements) of src1 in dimension 1 (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), // stride (elements) of src0 in dimension 2 (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)), // stride (elements) of src1 in dimension 2 (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), // stride (elements) of src0 in dimension 3 (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)), // stride (elements) of src1 in dimension 3 (uint32_t) src0->ne[2], // batch size in dimension 2 (uint32_t) src0->ne[3], // batch size in dimension 3 (uint32_t) (src1->ne[2] / src0->ne[2]), // broadcast in dimension 2 (uint32_t) (src1->ne[3] / src0->ne[3]) // broadcast in dimension 3 }; std::vector entries = { { .binding = 0, .buffer = ggml_backend_webgpu_tensor_buf(src0), .offset = ggml_backend_webgpu_tensor_offset(src0), .size = ggml_nbytes(src0) }, { .binding = 1, .buffer = ggml_backend_webgpu_tensor_buf(src1), .offset = ggml_backend_webgpu_tensor_offset(src1), .size = ggml_nbytes(src1) }, { .binding = 2, .buffer = ggml_backend_webgpu_tensor_buf(dst), .offset = ggml_backend_webgpu_tensor_offset(dst), .size = ggml_nbytes(dst) } }; uint32_t wg_x = (dst->ne[0] * dst->ne[1] * dst->ne[2] * dst->ne[3] + WEBGPU_MUL_MAT_WG_SIZE - 1) / WEBGPU_MUL_MAT_WG_SIZE; ggml_backend_webgpu_build_and_enqueue(ctx, ctx->mul_mat_pipeline, params, entries, wg_x); } // Returns true if node has enqueued work into the queue, false otherwise static bool ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) { if (ggml_is_empty(node)) { return false; } WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")"); ggml_tensor * src0 = node->src[0]; ggml_tensor * src1 = node->src[1]; switch (node->op) { // no-ops case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: return false; case GGML_OP_CPY: { ggml_webgpu_cpy(ctx, src0, node); break; } case GGML_OP_SET_ROWS: { ggml_webgpu_set_rows(ctx, src0, src1, node); break; } case GGML_OP_MUL_MAT: { ggml_webgpu_mul_mat(ctx, src0, src1, node); break; } default: return false; } return true; } static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)"); ggml_backend_webgpu_context * backend_ctx = static_cast(backend->context); webgpu_context ctx = backend_ctx->webgpu_ctx; for (int i = 0; i < cgraph->n_nodes; i++) { ggml_webgpu_encode_node(ctx, cgraph->nodes[i]); } ggml_backend_webgpu_submit_queue(ctx); ggml_backend_webgpu_wait_on_submission(ctx); return GGML_STATUS_SUCCESS; } static ggml_backend_i ggml_backend_webgpu_i = { /* .get_name = */ ggml_backend_webgpu_name, /* .free = */ ggml_backend_webgpu_free, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_webgpu_graph_compute, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; /* End GGML Backend Interface */ /* GGML Backend Buffer Interface */ static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_free_buffer()"); ggml_backend_webgpu_buffer_context * ctx = static_cast(buffer->context); ctx->buffer.Destroy(); } // Returns the "fake" base pointer. static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) { GGML_UNUSED(buffer); return webgpu_ptr_base; } static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) { if (size == 0) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do."); return; } WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buffer << ", " << tensor << ", " << value << ", " << offset << ", " << size << ")"); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; // This is a trick to set all bytes of a u32 to the same 1 byte value. uint32_t val32 = (uint32_t) value * 0x01010101; ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size); } static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx; size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size / 4) * 4); if (size % 4 != 0) { // If size is not a multiple of 4, we need to memset the remaining bytes size_t remaining_size = size % 4; // pack the remaining bytes into a uint32_t uint32_t val32 = 0; for (size_t i = 0; i < remaining_size; i++) { ((uint8_t *) &val32)[i] = ((const uint8_t *) data)[size - remaining_size + i]; } // memset the remaining bytes ggml_backend_webgpu_buffer_memset( webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size), remaining_size); } else { // wait for WriteBuffer to complete ggml_backend_webgpu_wait_on_submission(webgpu_ctx); } } static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")"); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx; wgpu::Device device = webgpu_ctx->device; size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset; size_t final_size = size; if (size % 4 != 0) { // If size is not a multiple of 4, we need to round it up to the next multiple of 4 final_size = size + (4 - (size % 4)); } std::lock_guard lock(webgpu_ctx->mutex); if (webgpu_ctx->get_tensor_staging_buf == nullptr || webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) { // Create a new staging buffer if it doesn't exist or is too small if (webgpu_ctx->get_tensor_staging_buf) { webgpu_ctx->get_tensor_staging_buf.Destroy(); } ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf"); } // Copy the data from the buffer to the staging buffer wgpu::CommandEncoder encoder = device.CreateCommandEncoder(); encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size); wgpu::CommandBuffer commands = encoder.Finish(); // Submit the command buffer to the queue webgpu_ctx->queue.Submit(1, &commands); // Map the staging buffer to read the data ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size); // Must specify size here since the staging buffer might be larger than the tensor size const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size); // Copy the data from the mapped range to the output buffer std::memcpy(data, mapped_range, size); webgpu_ctx->get_tensor_staging_buf.Unmap(); } static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")"); ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context; ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size); } static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = { /* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer, /* .get_base = */ ggml_backend_webgpu_buffer_get_base, /* .init_tensor = */ NULL, // TODO: optional, needed? /* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor, /* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor, /* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor, /* .cpy_tensor = */ NULL, // TODO: optional, implement this /* .clear = */ ggml_backend_webgpu_buffer_clear, /* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor }; /* End GGML Backend Buffer Interface */ /* GGML Backend Buffer Type Interface */ static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->device_name.c_str(); } static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer(" << size << ")"); ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); wgpu::Buffer buf; ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, size, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst, "allocated_buffer"); ggml_backend_webgpu_buffer_context * buf_ctx = new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf); return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size); } static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment; } // maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding. static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { ggml_backend_webgpu_device_context * ctx = static_cast(buft->device->context); return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize; } /* End GGML Backend Buffer Type Interface */ /* GGML Backend Device Interface */ static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); return ctx->device_name.c_str(); } static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); return ctx->device_desc.c_str(); } static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { ggml_backend_webgpu_device_context * ctx = static_cast(dev->context); // TODO: what do we actually want to return here? maxBufferSize might not be the full available memory. *free = ctx->webgpu_ctx->limits.maxBufferSize; *total = ctx->webgpu_ctx->limits.maxBufferSize; } static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) { GGML_UNUSED(dev); return GGML_BACKEND_DEVICE_TYPE_GPU; } static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) { props->name = ggml_backend_webgpu_device_get_name(dev); props->description = ggml_backend_webgpu_device_get_description(dev); props->type = ggml_backend_webgpu_device_get_type(dev); ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { /* .async = */ false, /* .host_buffer = */ false, /* .buffer_from_host_ptr = */ false, /* .events = */ false, }; } static ggml_guid_t ggml_backend_webgpu_guid(void) { static const char * guid_str = "__ggml_webgpu :)"; return reinterpret_cast((void *) guid_str); } static void ggml_webgpu_init_memset_pipeline(webgpu_context & webgpu_ctx) { // we use the maximum workgroup size for the memset pipeline size_t max_wg_size = webgpu_ctx->limits.maxComputeWorkgroupSizeX; size_t max_threads = max_wg_size * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension; // Size the bytes_per_thread so that the largest buffer size can be handled webgpu_ctx->memset_bytes_per_thread = (webgpu_ctx->limits.maxStorageBufferBindingSize + max_threads - 1) / max_threads; std::vector constants(2); constants[0].key = "wg_size"; constants[0].value = max_wg_size; constants[1].key = "bytes_per_thread"; constants[1].value = webgpu_ctx->memset_bytes_per_thread; ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->memset_pipeline, wgsl_memset, "memset", constants); } static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) { ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->mul_mat_pipeline, wgsl_mul_mat, "mul_mat"); } static void ggml_webgpu_init_set_rows_pipeline(webgpu_context & webgpu_ctx) { std::vector constants(1); constants[0].key = "wg_size"; constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX; ggml_webgpu_create_pipeline( webgpu_ctx->device, webgpu_ctx->set_rows_pipeline, wgsl_set_rows, "set_rows", constants); } static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) { std::vector constants(1); constants[0].key = "wg_size"; constants[0].value = webgpu_ctx->limits.maxComputeWorkgroupSizeX; ggml_webgpu_create_pipeline(webgpu_ctx->device, webgpu_ctx->cpy_pipeline, wgsl_cpy, "cpy", constants); } static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) { GGML_UNUSED(params); WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()"); ggml_backend_webgpu_device_context * dev_ctx = static_cast(dev->context); webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx; // Multiple threads may try to initialize the device std::lock_guard lock(webgpu_ctx->mutex); if (!webgpu_ctx->device_init) { // Initialize device std::vector required_features = { wgpu::FeatureName::ShaderF16, wgpu::FeatureName::ImplicitDeviceSynchronization }; wgpu::DeviceDescriptor dev_desc; dev_desc.requiredLimits = &webgpu_ctx->limits; dev_desc.requiredFeatures = required_features.data(); dev_desc.requiredFeatureCount = required_features.size(); dev_desc.SetDeviceLostCallback( wgpu::CallbackMode::AllowSpontaneous, [](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) { GGML_UNUSED(device); GGML_LOG_ERROR( "ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast(reason), message.data); }); dev_desc.SetUncapturedErrorCallback( [](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) { GGML_UNUSED(device); GGML_LOG_ERROR( "ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast(reason), message.data); }); webgpu_ctx->instance.WaitAny( webgpu_ctx->adapter.RequestDevice( &dev_desc, wgpu::CallbackMode::AllowSpontaneous, [webgpu_ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) { if (status != wgpu::RequestDeviceStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n", message.data); return; } webgpu_ctx->device = std::move(device); }), UINT64_MAX); GGML_ASSERT(webgpu_ctx->device != nullptr); // Initialize (compute) queue webgpu_ctx->queue = webgpu_ctx->device.GetQueue(); // Create buffer pool for shader parameters webgpu_ctx->param_buf_pool.init(webgpu_ctx->device, WEBGPU_NUM_PARAM_BUFS, WEBGPU_PARAMS_BUF_SIZE_BYTES, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform, wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite); webgpu_ctx->set_rows_error_buf_pool.init(webgpu_ctx->device, WEBGPU_NUM_SET_ROWS_ERROR_BUFS, WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES, wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Storage, wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead); ggml_webgpu_init_memset_pipeline(webgpu_ctx); ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx); ggml_webgpu_init_set_rows_pipeline(webgpu_ctx); ggml_webgpu_init_cpy_pipeline(webgpu_ctx); #ifdef GGML_WEBGPU_DEBUG // Initialize debug buffers ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->debug_host_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t), wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "debug_host_buf"); ggml_webgpu_create_buffer(webgpu_ctx->device, webgpu_ctx->debug_dev_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t), wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc, "debug_dev_buf"); #endif webgpu_ctx->device_init = true; } static ggml_backend_webgpu_context backend_ctx; backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name; backend_ctx.webgpu_ctx = webgpu_ctx; // See GGML Backend Interface section static ggml_backend backend = { /* .guid = */ ggml_backend_webgpu_guid(), /* .interface = */ ggml_backend_webgpu_i, /* .device = */ dev, /* .context = */ &backend_ctx, }; return &backend; } static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) { // See GGML Backend Buffer Type Interface section static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = { /* .iface = */ { /* .get_name = */ ggml_backend_webgpu_buffer_type_get_name, /* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer, /* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment, /* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .is_host = */ NULL, // defaults to false }, /* .device = */ dev, /* .context = */ NULL, }; return &ggml_backend_webgpu_buffer_type; } static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { GGML_UNUSED(dev); return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name; } static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { GGML_UNUSED(dev); switch (op->op) { case GGML_OP_NONE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: return true; case GGML_OP_CPY | GGML_OP_SET_ROWS: return op->type == GGML_TYPE_F16 && op->src[0]->type == GGML_TYPE_F32; case GGML_OP_MUL_MAT: return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; default: return false; } } static struct ggml_backend_device_i ggml_backend_webgpu_device_i = { /* .get_name = */ ggml_backend_webgpu_device_get_name, /* .get_description = */ ggml_backend_webgpu_device_get_description, /* .get_memory = */ ggml_backend_webgpu_device_get_memory, /* .get_type = */ ggml_backend_webgpu_device_get_type, /* .get_props = */ ggml_backend_webgpu_device_get_props, /* .init_backend = */ ggml_backend_webgpu_device_init, /* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ NULL, /* .supports_op = */ ggml_backend_webgpu_device_supports_op, /* .supports_buft = */ ggml_backend_webgpu_device_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; /* End GGML Backend Device Interface */ /* GGML Backend Registration Interface */ static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) { ggml_backend_webgpu_reg_context * ctx = static_cast(reg->context); return ctx->name; } static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) { ggml_backend_webgpu_reg_context * ctx = static_cast(reg->context); return ctx->device_count; } // TODO: Does this need to be thread safe? Is it only called once? // Only one device is supported for now static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) { GGML_ASSERT(index == 0); WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()"); ggml_backend_webgpu_reg_context * reg_ctx = static_cast(reg->context); webgpu_context ctx = reg_ctx->webgpu_ctx; wgpu::RequestAdapterOptions options = {}; auto callback = [](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char * message, void * userdata) { if (status != wgpu::RequestAdapterStatus::Success) { GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message); return; } *static_cast(userdata) = std::move(adapter); }; void * userdata = &ctx->adapter; ctx->instance.WaitAny( ctx->instance.RequestAdapter(&options, wgpu::CallbackMode::AllowSpontaneous, callback, userdata), UINT64_MAX); GGML_ASSERT(ctx->adapter != nullptr); ctx->adapter.GetLimits(&ctx->limits); wgpu::AdapterInfo info{}; ctx->adapter.GetInfo(&info); static ggml_backend_webgpu_device_context device_ctx; device_ctx.webgpu_ctx = ctx; device_ctx.device_name = GGML_WEBGPU_NAME; device_ctx.device_desc = std::string(info.description.data); GGML_LOG_INFO( "ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | " "device_desc: %s\n", info.vendorID, info.vendor.data, info.architecture.data, info.deviceID, info.device.data, info.description.data); // See GGML Backend Device Interface section static ggml_backend_device device = { /* .iface = */ ggml_backend_webgpu_device_i, /* .reg = */ reg, /* .context = */ &device_ctx, }; return &device; } static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = { /* .get_name = */ ggml_backend_webgpu_reg_get_name, /* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count, /* .get_device = */ ggml_backend_webgpu_reg_get_device, /* .get_proc_address = */ NULL, }; /* End GGML Backend Registration Interface */ ggml_backend_reg_t ggml_backend_webgpu_reg() { WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()"); webgpu_context webgpu_ctx = std::make_shared(); static ggml_backend_webgpu_reg_context ctx; ctx.webgpu_ctx = webgpu_ctx; ctx.name = GGML_WEBGPU_NAME; ctx.device_count = 1; wgpu::InstanceDescriptor instance_descriptor{}; std::vector instance_features = { wgpu::InstanceFeatureName::TimedWaitAny }; instance_descriptor.requiredFeatures = instance_features.data(); instance_descriptor.requiredFeatureCount = instance_features.size(); webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor); GGML_ASSERT(webgpu_ctx->instance != nullptr); static ggml_backend_reg reg = { /* .api_version = */ GGML_BACKEND_API_VERSION, /* .iface = */ ggml_backend_webgpu_reg_i, /* .context = */ &ctx, }; return ® } ggml_backend_t ggml_backend_webgpu_init(void) { ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0); return ggml_backend_webgpu_device_init(dev, nullptr); } GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)