Spaces:
Running
Running
Commit
·
f9c5a09
unverified
·
0
Parent(s):
Initial release
Browse files- .gitattributes +12 -0
- .gitignore +3 -0
- Makefile +109 -0
- convert-pt-to-ggml.py +328 -0
- dr_wav.h +0 -0
- ggml.c +0 -0
- ggml.h +527 -0
- main.cpp +2116 -0
- models/.gitignore +1 -0
- samples/.gitignore +1 -0
- samples/jfk.wav +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
bindings/go/samples/jfk.wav filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
models/for-tests-ggml-base.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
models/for-tests-ggml-base.en.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
models/for-tests-ggml-large.bin filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
models/for-tests-ggml-medium.bin filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
models/for-tests-ggml-medium.en.bin filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
models/for-tests-ggml-small.bin filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
models/for-tests-ggml-small.en.bin filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
models/for-tests-ggml-tiny.bin filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
models/for-tests-ggml-tiny.en.bin filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
models/for-tests-silero-v5.1.2-ggml.bin filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sync.sh
|
| 2 |
+
main
|
| 3 |
+
*.o
|
Makefile
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
main: ggml.o main.o
|
| 2 |
+
g++ -o main ggml.o main.o
|
| 3 |
+
|
| 4 |
+
ggml.o: ggml.c ggml.h
|
| 5 |
+
gcc -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
|
| 6 |
+
|
| 7 |
+
main.o: main.cpp ggml.h
|
| 8 |
+
g++ -O3 -std=c++11 -c main.cpp
|
| 9 |
+
|
| 10 |
+
# clean up the directory
|
| 11 |
+
clean:
|
| 12 |
+
rm -f *.o main
|
| 13 |
+
|
| 14 |
+
# run the program
|
| 15 |
+
run: main
|
| 16 |
+
./main
|
| 17 |
+
|
| 18 |
+
# download the following audio samples into folder "./samples":
|
| 19 |
+
.PHONY: samples
|
| 20 |
+
samples:
|
| 21 |
+
@echo "Downloading samples..."
|
| 22 |
+
mkdir -p samples
|
| 23 |
+
@wget --quiet --show-progress -O samples/gb0.ogg https://upload.wikimedia.org/wikipedia/commons/2/22/George_W._Bush%27s_weekly_radio_address_%28November_1%2C_2008%29.oga
|
| 24 |
+
@wget --quiet --show-progress -O samples/gb1.ogg https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg
|
| 25 |
+
@wget --quiet --show-progress -O samples/hp0.ogg https://upload.wikimedia.org/wikipedia/en/d/d4/En.henryfphillips.ogg
|
| 26 |
+
@echo "Converting to 16-bit WAV ..."
|
| 27 |
+
@ffmpeg -loglevel -0 -y -i samples/gb0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb0.wav
|
| 28 |
+
@ffmpeg -loglevel -0 -y -i samples/gb1.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/gb1.wav
|
| 29 |
+
@ffmpeg -loglevel -0 -y -i samples/hp0.ogg -ar 16000 -ac 1 -c:a pcm_s16le samples/hp0.wav
|
| 30 |
+
|
| 31 |
+
.PHONY: tiny.en
|
| 32 |
+
tiny.en: main
|
| 33 |
+
@echo "Downloading tiny.en (75 MB just once)"
|
| 34 |
+
mkdir -p models
|
| 35 |
+
@if [ ! -f models/ggml-tiny.en.bin ]; then \
|
| 36 |
+
wget --quiet --show-progress -O models/ggml-tiny.en.bin https://ggml.ggerganov.com/ggml-model-whisper-tiny.en.bin ; \
|
| 37 |
+
fi
|
| 38 |
+
@echo "==============================================="
|
| 39 |
+
@echo "Running tiny.en on all samples in ./samples ..."
|
| 40 |
+
@echo "==============================================="
|
| 41 |
+
@echo ""
|
| 42 |
+
@for f in samples/*.wav; do \
|
| 43 |
+
echo "----------------------------------------------" ; \
|
| 44 |
+
echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \
|
| 45 |
+
echo "----------------------------------------------" ; \
|
| 46 |
+
echo "" ; \
|
| 47 |
+
./main -m models/ggml-tiny.en.bin -f $$f ; \
|
| 48 |
+
echo "" ; \
|
| 49 |
+
done
|
| 50 |
+
|
| 51 |
+
.PHONY: base.en
|
| 52 |
+
base.en: main
|
| 53 |
+
@echo "Downloading base.en (142 MB just once)"
|
| 54 |
+
mkdir -p models
|
| 55 |
+
@if [ ! -f models/ggml-base.en.bin ]; then \
|
| 56 |
+
wget --quiet --show-progress -O models/ggml-base.en.bin https://ggml.ggerganov.com/ggml-model-whisper-base.en.bin ; \
|
| 57 |
+
fi
|
| 58 |
+
@echo "==============================================="
|
| 59 |
+
@echo "Running base.en on all samples in ./samples ..."
|
| 60 |
+
@echo "==============================================="
|
| 61 |
+
@echo ""
|
| 62 |
+
@for f in samples/*.wav; do \
|
| 63 |
+
echo "----------------------------------------------" ; \
|
| 64 |
+
echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \
|
| 65 |
+
echo "----------------------------------------------" ; \
|
| 66 |
+
echo "" ; \
|
| 67 |
+
./main -m models/ggml-base.en.bin -f $$f ; \
|
| 68 |
+
echo "" ; \
|
| 69 |
+
done
|
| 70 |
+
|
| 71 |
+
.PHONY: small.en
|
| 72 |
+
small.en: main
|
| 73 |
+
@echo "Downloading small.en (466 MB just once)"
|
| 74 |
+
mkdir -p models
|
| 75 |
+
@if [ ! -f models/ggml-small.en.bin ]; then \
|
| 76 |
+
wget --quiet --show-progress -O models/ggml-small.en.bin https://ggml.ggerganov.com/ggml-model-whisper-small.en.bin ; \
|
| 77 |
+
fi
|
| 78 |
+
@echo "==============================================="
|
| 79 |
+
@echo "Running small.en on all samples in ./samples ..."
|
| 80 |
+
@echo "==============================================="
|
| 81 |
+
@echo ""
|
| 82 |
+
@for f in samples/*.wav; do \
|
| 83 |
+
echo "----------------------------------------------" ; \
|
| 84 |
+
echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \
|
| 85 |
+
echo "----------------------------------------------" ; \
|
| 86 |
+
echo "" ; \
|
| 87 |
+
./main -m models/ggml-small.en.bin -f $$f ; \
|
| 88 |
+
echo "" ; \
|
| 89 |
+
done
|
| 90 |
+
|
| 91 |
+
.PHONY: medium.en
|
| 92 |
+
medium.en: main
|
| 93 |
+
@echo "Downloading medium.en (1.5 GB just once)"
|
| 94 |
+
mkdir -p models
|
| 95 |
+
@if [ ! -f models/ggml-medium.en.bin ]; then \
|
| 96 |
+
wget --quiet --show-progress -O models/ggml-medium.en.bin https://ggml.ggerganov.com/ggml-model-whisper-medium.en.bin ; \
|
| 97 |
+
fi
|
| 98 |
+
@echo "==============================================="
|
| 99 |
+
@echo "Running medium.en on all samples in ./samples ..."
|
| 100 |
+
@echo "==============================================="
|
| 101 |
+
@echo ""
|
| 102 |
+
@for f in samples/*.wav; do \
|
| 103 |
+
echo "----------------------------------------------" ; \
|
| 104 |
+
echo "[+] Running base.en on $$f ... (run 'ffplay $$f' to listen)" ; \
|
| 105 |
+
echo "----------------------------------------------" ; \
|
| 106 |
+
echo "" ; \
|
| 107 |
+
./main -m models/ggml-medium.en.bin -f $$f ; \
|
| 108 |
+
echo "" ; \
|
| 109 |
+
done
|
convert-pt-to-ggml.py
ADDED
|
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Convert Whisper transformer model from PyTorch to ggml format
|
| 2 |
+
#
|
| 3 |
+
# Usage: python convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium
|
| 4 |
+
#
|
| 5 |
+
# You need to clone the original repo in ~/path/to/repo/whisper/
|
| 6 |
+
#
|
| 7 |
+
# git clone https://github.com/openai/whisper ~/path/to/repo/whisper/
|
| 8 |
+
#
|
| 9 |
+
# It is used to various assets needed by the algorithm:
|
| 10 |
+
#
|
| 11 |
+
# - tokenizer
|
| 12 |
+
# - mel filters
|
| 13 |
+
#
|
| 14 |
+
# Also, you need to have the original models in ~/.cache/whisper/
|
| 15 |
+
# See the original repo for more details.
|
| 16 |
+
#
|
| 17 |
+
# This script loads the specified model and whisper assets and saves them in ggml format.
|
| 18 |
+
# The output is a single binary file containing the following information:
|
| 19 |
+
#
|
| 20 |
+
# - hparams
|
| 21 |
+
# - mel filters
|
| 22 |
+
# - tokenizer vocab
|
| 23 |
+
# - model variables
|
| 24 |
+
#
|
| 25 |
+
# For each variable, write the following:
|
| 26 |
+
#
|
| 27 |
+
# - Number of dimensions (int)
|
| 28 |
+
# - Name length (int)
|
| 29 |
+
# - Dimensions (int[n_dims])
|
| 30 |
+
# - Name (char[name_length])
|
| 31 |
+
# - Data (float[n_dims])
|
| 32 |
+
#
|
| 33 |
+
|
| 34 |
+
import io
|
| 35 |
+
import os
|
| 36 |
+
import sys
|
| 37 |
+
import struct
|
| 38 |
+
import json
|
| 39 |
+
import code
|
| 40 |
+
import torch
|
| 41 |
+
import numpy as np
|
| 42 |
+
|
| 43 |
+
from transformers import GPTJForCausalLM
|
| 44 |
+
from transformers import GPT2TokenizerFast
|
| 45 |
+
|
| 46 |
+
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110
|
| 47 |
+
LANGUAGES = {
|
| 48 |
+
"en": "english",
|
| 49 |
+
"zh": "chinese",
|
| 50 |
+
"de": "german",
|
| 51 |
+
"es": "spanish",
|
| 52 |
+
"ru": "russian",
|
| 53 |
+
"ko": "korean",
|
| 54 |
+
"fr": "french",
|
| 55 |
+
"ja": "japanese",
|
| 56 |
+
"pt": "portuguese",
|
| 57 |
+
"tr": "turkish",
|
| 58 |
+
"pl": "polish",
|
| 59 |
+
"ca": "catalan",
|
| 60 |
+
"nl": "dutch",
|
| 61 |
+
"ar": "arabic",
|
| 62 |
+
"sv": "swedish",
|
| 63 |
+
"it": "italian",
|
| 64 |
+
"id": "indonesian",
|
| 65 |
+
"hi": "hindi",
|
| 66 |
+
"fi": "finnish",
|
| 67 |
+
"vi": "vietnamese",
|
| 68 |
+
"iw": "hebrew",
|
| 69 |
+
"uk": "ukrainian",
|
| 70 |
+
"el": "greek",
|
| 71 |
+
"ms": "malay",
|
| 72 |
+
"cs": "czech",
|
| 73 |
+
"ro": "romanian",
|
| 74 |
+
"da": "danish",
|
| 75 |
+
"hu": "hungarian",
|
| 76 |
+
"ta": "tamil",
|
| 77 |
+
"no": "norwegian",
|
| 78 |
+
"th": "thai",
|
| 79 |
+
"ur": "urdu",
|
| 80 |
+
"hr": "croatian",
|
| 81 |
+
"bg": "bulgarian",
|
| 82 |
+
"lt": "lithuanian",
|
| 83 |
+
"la": "latin",
|
| 84 |
+
"mi": "maori",
|
| 85 |
+
"ml": "malayalam",
|
| 86 |
+
"cy": "welsh",
|
| 87 |
+
"sk": "slovak",
|
| 88 |
+
"te": "telugu",
|
| 89 |
+
"fa": "persian",
|
| 90 |
+
"lv": "latvian",
|
| 91 |
+
"bn": "bengali",
|
| 92 |
+
"sr": "serbian",
|
| 93 |
+
"az": "azerbaijani",
|
| 94 |
+
"sl": "slovenian",
|
| 95 |
+
"kn": "kannada",
|
| 96 |
+
"et": "estonian",
|
| 97 |
+
"mk": "macedonian",
|
| 98 |
+
"br": "breton",
|
| 99 |
+
"eu": "basque",
|
| 100 |
+
"is": "icelandic",
|
| 101 |
+
"hy": "armenian",
|
| 102 |
+
"ne": "nepali",
|
| 103 |
+
"mn": "mongolian",
|
| 104 |
+
"bs": "bosnian",
|
| 105 |
+
"kk": "kazakh",
|
| 106 |
+
"sq": "albanian",
|
| 107 |
+
"sw": "swahili",
|
| 108 |
+
"gl": "galician",
|
| 109 |
+
"mr": "marathi",
|
| 110 |
+
"pa": "punjabi",
|
| 111 |
+
"si": "sinhala",
|
| 112 |
+
"km": "khmer",
|
| 113 |
+
"sn": "shona",
|
| 114 |
+
"yo": "yoruba",
|
| 115 |
+
"so": "somali",
|
| 116 |
+
"af": "afrikaans",
|
| 117 |
+
"oc": "occitan",
|
| 118 |
+
"ka": "georgian",
|
| 119 |
+
"be": "belarusian",
|
| 120 |
+
"tg": "tajik",
|
| 121 |
+
"sd": "sindhi",
|
| 122 |
+
"gu": "gujarati",
|
| 123 |
+
"am": "amharic",
|
| 124 |
+
"yi": "yiddish",
|
| 125 |
+
"lo": "lao",
|
| 126 |
+
"uz": "uzbek",
|
| 127 |
+
"fo": "faroese",
|
| 128 |
+
"ht": "haitian creole",
|
| 129 |
+
"ps": "pashto",
|
| 130 |
+
"tk": "turkmen",
|
| 131 |
+
"nn": "nynorsk",
|
| 132 |
+
"mt": "maltese",
|
| 133 |
+
"sa": "sanskrit",
|
| 134 |
+
"lb": "luxembourgish",
|
| 135 |
+
"my": "myanmar",
|
| 136 |
+
"bo": "tibetan",
|
| 137 |
+
"tl": "tagalog",
|
| 138 |
+
"mg": "malagasy",
|
| 139 |
+
"as": "assamese",
|
| 140 |
+
"tt": "tatar",
|
| 141 |
+
"haw": "hawaiian",
|
| 142 |
+
"ln": "lingala",
|
| 143 |
+
"ha": "hausa",
|
| 144 |
+
"ba": "bashkir",
|
| 145 |
+
"jw": "javanese",
|
| 146 |
+
"su": "sundanese",
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292
|
| 150 |
+
def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"):
|
| 151 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 152 |
+
path = os.path.join(path_to_whisper_repo, "whisper/assets", name)
|
| 153 |
+
tokenizer = GPT2TokenizerFast.from_pretrained(path)
|
| 154 |
+
|
| 155 |
+
specials = [
|
| 156 |
+
"<|startoftranscript|>",
|
| 157 |
+
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
| 158 |
+
"<|translate|>",
|
| 159 |
+
"<|transcribe|>",
|
| 160 |
+
"<|startoflm|>",
|
| 161 |
+
"<|startofprev|>",
|
| 162 |
+
"<|nocaptions|>",
|
| 163 |
+
"<|notimestamps|>",
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
| 167 |
+
return tokenizer
|
| 168 |
+
|
| 169 |
+
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
| 170 |
+
def bytes_to_unicode():
|
| 171 |
+
"""
|
| 172 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 173 |
+
The reversible bpe codes work on unicode strings.
|
| 174 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 175 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 176 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 177 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 178 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 179 |
+
"""
|
| 180 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 181 |
+
cs = bs[:]
|
| 182 |
+
n = 0
|
| 183 |
+
for b in range(2**8):
|
| 184 |
+
if b not in bs:
|
| 185 |
+
bs.append(b)
|
| 186 |
+
cs.append(2**8+n)
|
| 187 |
+
n += 1
|
| 188 |
+
cs = [chr(n) for n in cs]
|
| 189 |
+
return dict(zip(bs, cs))
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
if len(sys.argv) < 4:
|
| 193 |
+
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
|
| 194 |
+
sys.exit(1)
|
| 195 |
+
|
| 196 |
+
fname_inp = sys.argv[1]
|
| 197 |
+
dir_whisper = sys.argv[2]
|
| 198 |
+
dir_out = sys.argv[3]
|
| 199 |
+
|
| 200 |
+
# try to load PyTorch binary data
|
| 201 |
+
try:
|
| 202 |
+
model_bytes = open(fname_inp, "rb").read()
|
| 203 |
+
with io.BytesIO(model_bytes) as fp:
|
| 204 |
+
checkpoint = torch.load(fp, map_location="cpu")
|
| 205 |
+
except:
|
| 206 |
+
print("Error: failed to load PyTorch model file: %s" % fname_inp)
|
| 207 |
+
sys.exit(1)
|
| 208 |
+
|
| 209 |
+
hparams = checkpoint["dims"]
|
| 210 |
+
print("hparams:", hparams)
|
| 211 |
+
|
| 212 |
+
list_vars = checkpoint["model_state_dict"]
|
| 213 |
+
|
| 214 |
+
#print(list_vars['encoder.positional_embedding'])
|
| 215 |
+
#print(list_vars['encoder.conv1.weight'])
|
| 216 |
+
#print(list_vars['encoder.conv1.weight'].shape)
|
| 217 |
+
|
| 218 |
+
# load mel filters
|
| 219 |
+
n_mels = hparams["n_mels"]
|
| 220 |
+
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
|
| 221 |
+
filters = torch.from_numpy(f[f"mel_{n_mels}"])
|
| 222 |
+
#print (filters)
|
| 223 |
+
|
| 224 |
+
#code.interact(local=locals())
|
| 225 |
+
|
| 226 |
+
multilingual = hparams["n_vocab"] == 51865
|
| 227 |
+
tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
|
| 228 |
+
|
| 229 |
+
#print(tokenizer)
|
| 230 |
+
#print(tokenizer.name_or_path)
|
| 231 |
+
#print(len(tokenizer.additional_special_tokens))
|
| 232 |
+
dir_tokenizer = tokenizer.name_or_path
|
| 233 |
+
|
| 234 |
+
# output in the same directory as the model
|
| 235 |
+
fname_out = dir_out + "/ggml-model.bin"
|
| 236 |
+
|
| 237 |
+
with open(dir_tokenizer + "/vocab.json", "r") as f:
|
| 238 |
+
tokens = json.load(f)
|
| 239 |
+
|
| 240 |
+
# use 16-bit or 32-bit floats
|
| 241 |
+
use_f16 = True
|
| 242 |
+
if len(sys.argv) > 4:
|
| 243 |
+
use_f16 = False
|
| 244 |
+
fname_out = dir_out + "/ggml-model-f32.bin"
|
| 245 |
+
|
| 246 |
+
fout = open(fname_out, "wb")
|
| 247 |
+
|
| 248 |
+
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
| 249 |
+
fout.write(struct.pack("i", hparams["n_vocab"]))
|
| 250 |
+
fout.write(struct.pack("i", hparams["n_audio_ctx"]))
|
| 251 |
+
fout.write(struct.pack("i", hparams["n_audio_state"]))
|
| 252 |
+
fout.write(struct.pack("i", hparams["n_audio_head"]))
|
| 253 |
+
fout.write(struct.pack("i", hparams["n_audio_layer"]))
|
| 254 |
+
fout.write(struct.pack("i", hparams["n_text_ctx"]))
|
| 255 |
+
fout.write(struct.pack("i", hparams["n_text_state"]))
|
| 256 |
+
fout.write(struct.pack("i", hparams["n_text_head"]))
|
| 257 |
+
fout.write(struct.pack("i", hparams["n_text_layer"]))
|
| 258 |
+
fout.write(struct.pack("i", hparams["n_mels"]))
|
| 259 |
+
fout.write(struct.pack("i", use_f16))
|
| 260 |
+
|
| 261 |
+
# write mel filters
|
| 262 |
+
fout.write(struct.pack("i", filters.shape[0]))
|
| 263 |
+
fout.write(struct.pack("i", filters.shape[1]))
|
| 264 |
+
for i in range(filters.shape[0]):
|
| 265 |
+
for j in range(filters.shape[1]):
|
| 266 |
+
fout.write(struct.pack("f", filters[i][j]))
|
| 267 |
+
|
| 268 |
+
byte_encoder = bytes_to_unicode()
|
| 269 |
+
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
| 270 |
+
|
| 271 |
+
fout.write(struct.pack("i", len(tokens)))
|
| 272 |
+
|
| 273 |
+
for key in tokens:
|
| 274 |
+
text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
|
| 275 |
+
fout.write(struct.pack("i", len(text)))
|
| 276 |
+
fout.write(text)
|
| 277 |
+
|
| 278 |
+
for name in list_vars.keys():
|
| 279 |
+
data = list_vars[name].squeeze().numpy()
|
| 280 |
+
print("Processing variable: " + name + " with shape: ", data.shape)
|
| 281 |
+
|
| 282 |
+
# reshape conv bias from [n] to [n, 1]
|
| 283 |
+
if name == "encoder.conv1.bias" or \
|
| 284 |
+
name == "encoder.conv2.bias":
|
| 285 |
+
data = data.reshape(data.shape[0], 1)
|
| 286 |
+
print(" Reshaped variable: " + name + " to shape: ", data.shape)
|
| 287 |
+
|
| 288 |
+
n_dims = len(data.shape);
|
| 289 |
+
|
| 290 |
+
# looks like the whisper models are in f16 by default
|
| 291 |
+
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
|
| 292 |
+
# ftype == 0 -> float32, ftype == 1 -> float16
|
| 293 |
+
ftype = 1;
|
| 294 |
+
if use_f16:
|
| 295 |
+
if n_dims < 2 or \
|
| 296 |
+
name == "encoder.conv1.bias" or \
|
| 297 |
+
name == "encoder.conv2.bias" or \
|
| 298 |
+
name == "encoder.positional_embedding" or \
|
| 299 |
+
name == "decoder.positional_embedding":
|
| 300 |
+
ftype = 0
|
| 301 |
+
data = data.astype(np.float32)
|
| 302 |
+
print(" Converting to float32")
|
| 303 |
+
data = data.astype(np.float32)
|
| 304 |
+
ftype = 0
|
| 305 |
+
else:
|
| 306 |
+
data = data.astype(np.float32)
|
| 307 |
+
ftype = 0
|
| 308 |
+
|
| 309 |
+
#if name.startswith("encoder"):
|
| 310 |
+
# if name.endswith("mlp.0.weight") or \
|
| 311 |
+
# name.endswith("mlp.2.weight"):
|
| 312 |
+
# print(" Transposing")
|
| 313 |
+
# data = data.transpose()
|
| 314 |
+
|
| 315 |
+
# header
|
| 316 |
+
str = name.encode('utf-8')
|
| 317 |
+
fout.write(struct.pack("iii", n_dims, len(str), ftype))
|
| 318 |
+
for i in range(n_dims):
|
| 319 |
+
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
| 320 |
+
fout.write(str);
|
| 321 |
+
|
| 322 |
+
# data
|
| 323 |
+
data.tofile(fout)
|
| 324 |
+
|
| 325 |
+
fout.close()
|
| 326 |
+
|
| 327 |
+
print("Done. Output file: " + fname_out)
|
| 328 |
+
print("")
|
dr_wav.h
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ggml.c
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ggml.h
ADDED
|
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#ifdef __cplusplus
|
| 4 |
+
extern "C" {
|
| 5 |
+
#endif
|
| 6 |
+
|
| 7 |
+
#include <stdint.h>
|
| 8 |
+
#include <stddef.h>
|
| 9 |
+
#include <stdbool.h>
|
| 10 |
+
|
| 11 |
+
#define GGML_MAX_DIMS 4
|
| 12 |
+
#define GGML_MAX_NODES 4096
|
| 13 |
+
#define GGML_MAX_PARAMS 16
|
| 14 |
+
#define GGML_MAX_CONTEXTS 16
|
| 15 |
+
|
| 16 |
+
#ifdef __ARM_NEON
|
| 17 |
+
// we use the built-in 16-bit float type
|
| 18 |
+
typedef __fp16 ggml_fp16_t;
|
| 19 |
+
#else
|
| 20 |
+
typedef uint16_t ggml_fp16_t;
|
| 21 |
+
#endif
|
| 22 |
+
|
| 23 |
+
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
| 24 |
+
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
| 25 |
+
|
| 26 |
+
struct ggml_object;
|
| 27 |
+
struct ggml_context;
|
| 28 |
+
|
| 29 |
+
enum ggml_type {
|
| 30 |
+
GGML_TYPE_I8,
|
| 31 |
+
GGML_TYPE_I16,
|
| 32 |
+
GGML_TYPE_I32,
|
| 33 |
+
GGML_TYPE_F16,
|
| 34 |
+
GGML_TYPE_F32,
|
| 35 |
+
GGML_TYPE_COUNT,
|
| 36 |
+
};
|
| 37 |
+
|
| 38 |
+
enum ggml_op {
|
| 39 |
+
GGML_OP_NONE = 0,
|
| 40 |
+
|
| 41 |
+
GGML_OP_DUP,
|
| 42 |
+
GGML_OP_ADD,
|
| 43 |
+
GGML_OP_SUB,
|
| 44 |
+
GGML_OP_MUL,
|
| 45 |
+
GGML_OP_DIV,
|
| 46 |
+
GGML_OP_SQR,
|
| 47 |
+
GGML_OP_SQRT,
|
| 48 |
+
GGML_OP_SUM,
|
| 49 |
+
GGML_OP_MEAN,
|
| 50 |
+
GGML_OP_REPEAT,
|
| 51 |
+
GGML_OP_ABS,
|
| 52 |
+
GGML_OP_SGN,
|
| 53 |
+
GGML_OP_NEG,
|
| 54 |
+
GGML_OP_STEP,
|
| 55 |
+
GGML_OP_RELU,
|
| 56 |
+
GGML_OP_GELU,
|
| 57 |
+
GGML_OP_NORM, // normalize
|
| 58 |
+
|
| 59 |
+
GGML_OP_MUL_MAT,
|
| 60 |
+
|
| 61 |
+
GGML_OP_SCALE,
|
| 62 |
+
GGML_OP_CPY,
|
| 63 |
+
GGML_OP_RESHAPE,
|
| 64 |
+
GGML_OP_VIEW,
|
| 65 |
+
GGML_OP_PERMUTE,
|
| 66 |
+
GGML_OP_TRANSPOSE,
|
| 67 |
+
GGML_OP_GET_ROWS,
|
| 68 |
+
GGML_OP_DIAG_MASK_INF,
|
| 69 |
+
GGML_OP_SOFT_MAX,
|
| 70 |
+
GGML_OP_ROPE,
|
| 71 |
+
GGML_OP_CONV_1D_1S,
|
| 72 |
+
GGML_OP_CONV_1D_2S,
|
| 73 |
+
|
| 74 |
+
GGML_OP_COUNT,
|
| 75 |
+
};
|
| 76 |
+
|
| 77 |
+
// n-dimensional tensor
|
| 78 |
+
struct ggml_tensor {
|
| 79 |
+
enum ggml_type type;
|
| 80 |
+
|
| 81 |
+
int n_dims;
|
| 82 |
+
int ne[GGML_MAX_DIMS]; // number of elements
|
| 83 |
+
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
| 84 |
+
// nb[0] = sizeof(type)
|
| 85 |
+
// nb[1] = nb[0] * ne[0] + padding
|
| 86 |
+
// nb[i] = nb[i-1] * ne[i-1]
|
| 87 |
+
|
| 88 |
+
// compute data
|
| 89 |
+
enum ggml_op op;
|
| 90 |
+
|
| 91 |
+
bool is_param;
|
| 92 |
+
|
| 93 |
+
struct ggml_tensor * grad;
|
| 94 |
+
struct ggml_tensor * src0;
|
| 95 |
+
struct ggml_tensor * src1;
|
| 96 |
+
|
| 97 |
+
// thread scheduling
|
| 98 |
+
int n_tasks;
|
| 99 |
+
|
| 100 |
+
// performance
|
| 101 |
+
int perf_runs;
|
| 102 |
+
int64_t perf_cycles;
|
| 103 |
+
int64_t perf_time_us;
|
| 104 |
+
|
| 105 |
+
void * data;
|
| 106 |
+
char pad[8];
|
| 107 |
+
};
|
| 108 |
+
|
| 109 |
+
// computation graph
|
| 110 |
+
struct ggml_cgraph {
|
| 111 |
+
int n_nodes;
|
| 112 |
+
int n_leafs;
|
| 113 |
+
int n_threads;
|
| 114 |
+
|
| 115 |
+
size_t work_size;
|
| 116 |
+
struct ggml_tensor * work;
|
| 117 |
+
|
| 118 |
+
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
| 119 |
+
struct ggml_tensor * grads[GGML_MAX_NODES];
|
| 120 |
+
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
| 121 |
+
|
| 122 |
+
// performance
|
| 123 |
+
int perf_runs;
|
| 124 |
+
int64_t perf_cycles;
|
| 125 |
+
int64_t perf_time_us;
|
| 126 |
+
};
|
| 127 |
+
|
| 128 |
+
struct ggml_init_params {
|
| 129 |
+
// memory pool
|
| 130 |
+
size_t mem_size; // bytes
|
| 131 |
+
void * mem_buffer; // if NULL, memory will be allocated internally
|
| 132 |
+
};
|
| 133 |
+
|
| 134 |
+
int64_t ggml_time_ms(void);
|
| 135 |
+
int64_t ggml_time_us(void);
|
| 136 |
+
int64_t ggml_cycles(void);
|
| 137 |
+
int64_t ggml_cycles_per_ms(void);
|
| 138 |
+
|
| 139 |
+
void ggml_print_object (const struct ggml_object * obj);
|
| 140 |
+
void ggml_print_objects(const struct ggml_context * ctx);
|
| 141 |
+
|
| 142 |
+
int ggml_nelements(const struct ggml_tensor * tensor);
|
| 143 |
+
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
| 144 |
+
|
| 145 |
+
size_t ggml_type_size (enum ggml_type type);
|
| 146 |
+
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
| 147 |
+
|
| 148 |
+
struct ggml_context * ggml_init(struct ggml_init_params params);
|
| 149 |
+
void ggml_free(struct ggml_context * ctx);
|
| 150 |
+
|
| 151 |
+
size_t ggml_used_mem(const struct ggml_context * ctx);
|
| 152 |
+
|
| 153 |
+
struct ggml_tensor * ggml_new_tensor(
|
| 154 |
+
struct ggml_context * ctx,
|
| 155 |
+
enum ggml_type type,
|
| 156 |
+
int n_dims,
|
| 157 |
+
const int *ne);
|
| 158 |
+
|
| 159 |
+
struct ggml_tensor * ggml_new_tensor_1d(
|
| 160 |
+
struct ggml_context * ctx,
|
| 161 |
+
enum ggml_type type,
|
| 162 |
+
int ne0);
|
| 163 |
+
|
| 164 |
+
struct ggml_tensor * ggml_new_tensor_2d(
|
| 165 |
+
struct ggml_context * ctx,
|
| 166 |
+
enum ggml_type type,
|
| 167 |
+
int ne0,
|
| 168 |
+
int ne1);
|
| 169 |
+
|
| 170 |
+
struct ggml_tensor * ggml_new_tensor_3d(
|
| 171 |
+
struct ggml_context * ctx,
|
| 172 |
+
enum ggml_type type,
|
| 173 |
+
int ne0,
|
| 174 |
+
int ne1,
|
| 175 |
+
int ne2);
|
| 176 |
+
|
| 177 |
+
struct ggml_tensor * ggml_new_tensor_4d(
|
| 178 |
+
struct ggml_context * ctx,
|
| 179 |
+
enum ggml_type type,
|
| 180 |
+
int ne0,
|
| 181 |
+
int ne1,
|
| 182 |
+
int ne2,
|
| 183 |
+
int ne3);
|
| 184 |
+
|
| 185 |
+
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
| 186 |
+
|
| 187 |
+
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
| 188 |
+
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
| 189 |
+
|
| 190 |
+
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
| 191 |
+
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
| 192 |
+
|
| 193 |
+
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
| 194 |
+
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
| 195 |
+
|
| 196 |
+
void * ggml_get_data (const struct ggml_tensor * tensor);
|
| 197 |
+
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
| 198 |
+
|
| 199 |
+
//
|
| 200 |
+
// operations on tensors with backpropagation
|
| 201 |
+
//
|
| 202 |
+
|
| 203 |
+
struct ggml_tensor * ggml_dup(
|
| 204 |
+
struct ggml_context * ctx,
|
| 205 |
+
struct ggml_tensor * a);
|
| 206 |
+
|
| 207 |
+
struct ggml_tensor * ggml_add(
|
| 208 |
+
struct ggml_context * ctx,
|
| 209 |
+
struct ggml_tensor * a,
|
| 210 |
+
struct ggml_tensor * b);
|
| 211 |
+
|
| 212 |
+
struct ggml_tensor * ggml_sub(
|
| 213 |
+
struct ggml_context * ctx,
|
| 214 |
+
struct ggml_tensor * a,
|
| 215 |
+
struct ggml_tensor * b);
|
| 216 |
+
|
| 217 |
+
struct ggml_tensor * ggml_mul(
|
| 218 |
+
struct ggml_context * ctx,
|
| 219 |
+
struct ggml_tensor * a,
|
| 220 |
+
struct ggml_tensor * b);
|
| 221 |
+
|
| 222 |
+
struct ggml_tensor * ggml_div(
|
| 223 |
+
struct ggml_context * ctx,
|
| 224 |
+
struct ggml_tensor * a,
|
| 225 |
+
struct ggml_tensor * b);
|
| 226 |
+
|
| 227 |
+
struct ggml_tensor * ggml_sqr(
|
| 228 |
+
struct ggml_context * ctx,
|
| 229 |
+
struct ggml_tensor * a);
|
| 230 |
+
|
| 231 |
+
struct ggml_tensor * ggml_sqrt(
|
| 232 |
+
struct ggml_context * ctx,
|
| 233 |
+
struct ggml_tensor * a);
|
| 234 |
+
|
| 235 |
+
// return scalar
|
| 236 |
+
// TODO: compute sum along rows
|
| 237 |
+
struct ggml_tensor * ggml_sum(
|
| 238 |
+
struct ggml_context * ctx,
|
| 239 |
+
struct ggml_tensor * a);
|
| 240 |
+
|
| 241 |
+
// mean along rows
|
| 242 |
+
struct ggml_tensor * ggml_mean(
|
| 243 |
+
struct ggml_context * ctx,
|
| 244 |
+
struct ggml_tensor * a);
|
| 245 |
+
|
| 246 |
+
// if a is the same shape as b, and a is not parameter, return a
|
| 247 |
+
// otherwise, return a new tensor: repeat(a) to fit in b
|
| 248 |
+
struct ggml_tensor * ggml_repeat(
|
| 249 |
+
struct ggml_context * ctx,
|
| 250 |
+
struct ggml_tensor * a,
|
| 251 |
+
struct ggml_tensor * b);
|
| 252 |
+
|
| 253 |
+
struct ggml_tensor * ggml_abs(
|
| 254 |
+
struct ggml_context * ctx,
|
| 255 |
+
struct ggml_tensor * a);
|
| 256 |
+
|
| 257 |
+
struct ggml_tensor * ggml_sgn(
|
| 258 |
+
struct ggml_context * ctx,
|
| 259 |
+
struct ggml_tensor * a);
|
| 260 |
+
|
| 261 |
+
struct ggml_tensor * ggml_neg(
|
| 262 |
+
struct ggml_context * ctx,
|
| 263 |
+
struct ggml_tensor * a);
|
| 264 |
+
|
| 265 |
+
struct ggml_tensor * ggml_step(
|
| 266 |
+
struct ggml_context * ctx,
|
| 267 |
+
struct ggml_tensor * a);
|
| 268 |
+
|
| 269 |
+
struct ggml_tensor * ggml_relu(
|
| 270 |
+
struct ggml_context * ctx,
|
| 271 |
+
struct ggml_tensor * a);
|
| 272 |
+
|
| 273 |
+
// TODO: double-check this computation is correct
|
| 274 |
+
struct ggml_tensor * ggml_gelu(
|
| 275 |
+
struct ggml_context * ctx,
|
| 276 |
+
struct ggml_tensor * a);
|
| 277 |
+
|
| 278 |
+
// normalize along rows
|
| 279 |
+
// TODO: eps is hardcoded to 1e-5 for now
|
| 280 |
+
struct ggml_tensor * ggml_norm(
|
| 281 |
+
struct ggml_context * ctx,
|
| 282 |
+
struct ggml_tensor * a);
|
| 283 |
+
|
| 284 |
+
// A: m rows, n columns
|
| 285 |
+
// B: p rows, n columns (i.e. we transpose it internally)
|
| 286 |
+
// result is m columns, p rows
|
| 287 |
+
struct ggml_tensor * ggml_mul_mat(
|
| 288 |
+
struct ggml_context * ctx,
|
| 289 |
+
struct ggml_tensor * a,
|
| 290 |
+
struct ggml_tensor * b);
|
| 291 |
+
|
| 292 |
+
//
|
| 293 |
+
// operations on tensors without backpropagation
|
| 294 |
+
//
|
| 295 |
+
|
| 296 |
+
// in-place, returns view(a)
|
| 297 |
+
struct ggml_tensor * ggml_scale(
|
| 298 |
+
struct ggml_context * ctx,
|
| 299 |
+
struct ggml_tensor * a,
|
| 300 |
+
struct ggml_tensor * b);
|
| 301 |
+
|
| 302 |
+
// a -> b, return view(b)
|
| 303 |
+
struct ggml_tensor * ggml_cpy(
|
| 304 |
+
struct ggml_context * ctx,
|
| 305 |
+
struct ggml_tensor * a,
|
| 306 |
+
struct ggml_tensor * b);
|
| 307 |
+
|
| 308 |
+
// return view(a), b specifies the new shape
|
| 309 |
+
// TODO: when we start computing gradient, make a copy instead of view
|
| 310 |
+
struct ggml_tensor * ggml_reshape(
|
| 311 |
+
struct ggml_context * ctx,
|
| 312 |
+
struct ggml_tensor * a,
|
| 313 |
+
struct ggml_tensor * b);
|
| 314 |
+
|
| 315 |
+
// return view(a)
|
| 316 |
+
// TODO: when we start computing gradient, make a copy instead of view
|
| 317 |
+
struct ggml_tensor * ggml_reshape_2d(
|
| 318 |
+
struct ggml_context * ctx,
|
| 319 |
+
struct ggml_tensor * a,
|
| 320 |
+
int ne0,
|
| 321 |
+
int ne1);
|
| 322 |
+
|
| 323 |
+
// return view(a)
|
| 324 |
+
// TODO: when we start computing gradient, make a copy instead of view
|
| 325 |
+
struct ggml_tensor * ggml_reshape_3d(
|
| 326 |
+
struct ggml_context * ctx,
|
| 327 |
+
struct ggml_tensor * a,
|
| 328 |
+
int ne0,
|
| 329 |
+
int ne1,
|
| 330 |
+
int ne2);
|
| 331 |
+
|
| 332 |
+
// offset in bytes
|
| 333 |
+
struct ggml_tensor * ggml_view_1d(
|
| 334 |
+
struct ggml_context * ctx,
|
| 335 |
+
struct ggml_tensor * a,
|
| 336 |
+
int ne0,
|
| 337 |
+
size_t offset);
|
| 338 |
+
|
| 339 |
+
struct ggml_tensor * ggml_view_2d(
|
| 340 |
+
struct ggml_context * ctx,
|
| 341 |
+
struct ggml_tensor * a,
|
| 342 |
+
int ne0,
|
| 343 |
+
int ne1,
|
| 344 |
+
size_t nb1, // row stride in bytes
|
| 345 |
+
size_t offset);
|
| 346 |
+
|
| 347 |
+
struct ggml_tensor * ggml_permute(
|
| 348 |
+
struct ggml_context * ctx,
|
| 349 |
+
struct ggml_tensor * a,
|
| 350 |
+
int axis0,
|
| 351 |
+
int axis1,
|
| 352 |
+
int axis2,
|
| 353 |
+
int axis3);
|
| 354 |
+
|
| 355 |
+
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
| 356 |
+
struct ggml_tensor * ggml_transpose(
|
| 357 |
+
struct ggml_context * ctx,
|
| 358 |
+
struct ggml_tensor * a);
|
| 359 |
+
|
| 360 |
+
struct ggml_tensor * ggml_get_rows(
|
| 361 |
+
struct ggml_context * ctx,
|
| 362 |
+
struct ggml_tensor * a,
|
| 363 |
+
struct ggml_tensor * b);
|
| 364 |
+
|
| 365 |
+
// set elements above the diagonal to -INF
|
| 366 |
+
// in-place, returns view(a)
|
| 367 |
+
struct ggml_tensor * ggml_diag_mask_inf(
|
| 368 |
+
struct ggml_context * ctx,
|
| 369 |
+
struct ggml_tensor * a,
|
| 370 |
+
int n_past);
|
| 371 |
+
|
| 372 |
+
// in-place, returns view(a)
|
| 373 |
+
struct ggml_tensor * ggml_soft_max(
|
| 374 |
+
struct ggml_context * ctx,
|
| 375 |
+
struct ggml_tensor * a);
|
| 376 |
+
|
| 377 |
+
// rotary position embedding
|
| 378 |
+
// in-place, returns view(a)
|
| 379 |
+
// if mode == 1, skip n_past elements
|
| 380 |
+
// TODO: avoid creating a new tensor every time
|
| 381 |
+
struct ggml_tensor * ggml_rope(
|
| 382 |
+
struct ggml_context * ctx,
|
| 383 |
+
struct ggml_tensor * a,
|
| 384 |
+
int n_past,
|
| 385 |
+
int n_dims,
|
| 386 |
+
int mode);
|
| 387 |
+
|
| 388 |
+
// padding = 1
|
| 389 |
+
// TODO: we don't support extra parameters for now
|
| 390 |
+
// that's why we are hard-coding the stride, padding, and dilation
|
| 391 |
+
// not great ..
|
| 392 |
+
struct ggml_tensor * ggml_conv_1d_1s(
|
| 393 |
+
struct ggml_context * ctx,
|
| 394 |
+
struct ggml_tensor * a,
|
| 395 |
+
struct ggml_tensor * b);
|
| 396 |
+
|
| 397 |
+
struct ggml_tensor * ggml_conv_1d_2s(
|
| 398 |
+
struct ggml_context * ctx,
|
| 399 |
+
struct ggml_tensor * a,
|
| 400 |
+
struct ggml_tensor * b);
|
| 401 |
+
|
| 402 |
+
//
|
| 403 |
+
// automatic differentiation
|
| 404 |
+
//
|
| 405 |
+
|
| 406 |
+
void ggml_set_param(
|
| 407 |
+
struct ggml_context * ctx,
|
| 408 |
+
struct ggml_tensor * tensor);
|
| 409 |
+
|
| 410 |
+
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
| 411 |
+
|
| 412 |
+
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
| 413 |
+
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
| 414 |
+
|
| 415 |
+
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
| 416 |
+
void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
| 417 |
+
|
| 418 |
+
// print info and performance information for the graph
|
| 419 |
+
void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
| 420 |
+
|
| 421 |
+
// dump the graph into a file using the dot format
|
| 422 |
+
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
| 423 |
+
|
| 424 |
+
//
|
| 425 |
+
// optimization
|
| 426 |
+
//
|
| 427 |
+
|
| 428 |
+
// optimization methods
|
| 429 |
+
enum ggml_opt_type {
|
| 430 |
+
GGML_OPT_ADAM,
|
| 431 |
+
GGML_OPT_LBFGS,
|
| 432 |
+
};
|
| 433 |
+
|
| 434 |
+
// linesearch methods
|
| 435 |
+
enum ggml_linesearch {
|
| 436 |
+
GGML_LINESEARCH_DEFAULT = 1,
|
| 437 |
+
|
| 438 |
+
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
| 439 |
+
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
| 440 |
+
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
| 441 |
+
};
|
| 442 |
+
|
| 443 |
+
// optimization return values
|
| 444 |
+
enum ggml_opt_result {
|
| 445 |
+
GGML_OPT_OK = 0,
|
| 446 |
+
GGML_OPT_DID_NOT_CONVERGE,
|
| 447 |
+
GGML_OPT_NO_CONTEXT,
|
| 448 |
+
GGML_OPT_INVALID_WOLFE,
|
| 449 |
+
GGML_OPT_FAIL,
|
| 450 |
+
|
| 451 |
+
GGML_LINESEARCH_FAIL = -128,
|
| 452 |
+
GGML_LINESEARCH_MINIMUM_STEP,
|
| 453 |
+
GGML_LINESEARCH_MAXIMUM_STEP,
|
| 454 |
+
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
| 455 |
+
GGML_LINESEARCH_INVALID_PARAMETERS,
|
| 456 |
+
};
|
| 457 |
+
|
| 458 |
+
// optimization parameters
|
| 459 |
+
//
|
| 460 |
+
// see ggml.c (ggml_opt_default_params) for default values
|
| 461 |
+
//
|
| 462 |
+
struct ggml_opt_params {
|
| 463 |
+
enum ggml_opt_type type;
|
| 464 |
+
|
| 465 |
+
int n_threads;
|
| 466 |
+
|
| 467 |
+
// delta-based convergence test
|
| 468 |
+
//
|
| 469 |
+
// if past == 0 - disabled
|
| 470 |
+
// if past > 0:
|
| 471 |
+
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
| 472 |
+
//
|
| 473 |
+
int past;
|
| 474 |
+
float delta;
|
| 475 |
+
|
| 476 |
+
// maximum number of iterations without improvement
|
| 477 |
+
//
|
| 478 |
+
// if 0 - disabled
|
| 479 |
+
// if > 0:
|
| 480 |
+
// assume convergence if no cost improvement in this number of iterations
|
| 481 |
+
//
|
| 482 |
+
int max_no_improvement;
|
| 483 |
+
|
| 484 |
+
bool print_forward_graph;
|
| 485 |
+
bool print_backward_graph;
|
| 486 |
+
|
| 487 |
+
union {
|
| 488 |
+
// ADAM parameters
|
| 489 |
+
struct {
|
| 490 |
+
int n_iter;
|
| 491 |
+
|
| 492 |
+
float alpha; // learning rate
|
| 493 |
+
float beta1;
|
| 494 |
+
float beta2;
|
| 495 |
+
float eps; // epsilon for numerical stability
|
| 496 |
+
float eps_f; // epsilon for convergence test
|
| 497 |
+
float eps_g; // epsilon for convergence test
|
| 498 |
+
} adam;
|
| 499 |
+
|
| 500 |
+
// LBFGS parameters
|
| 501 |
+
struct {
|
| 502 |
+
int m; // number of corrections to approximate the inv. Hessian
|
| 503 |
+
int n_iter;
|
| 504 |
+
int max_linesearch;
|
| 505 |
+
|
| 506 |
+
float eps; // convergence tolerance
|
| 507 |
+
float ftol; // line search tolerance
|
| 508 |
+
float wolfe;
|
| 509 |
+
float min_step;
|
| 510 |
+
float max_step;
|
| 511 |
+
|
| 512 |
+
enum ggml_linesearch linesearch;
|
| 513 |
+
} lbfgs;
|
| 514 |
+
};
|
| 515 |
+
};
|
| 516 |
+
|
| 517 |
+
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
| 518 |
+
|
| 519 |
+
// optimize the function defined by the tensor f
|
| 520 |
+
enum ggml_opt_result ggml_opt(
|
| 521 |
+
struct ggml_context * ctx,
|
| 522 |
+
struct ggml_opt_params params,
|
| 523 |
+
struct ggml_tensor * f);
|
| 524 |
+
|
| 525 |
+
#ifdef __cplusplus
|
| 526 |
+
}
|
| 527 |
+
#endif
|
main.cpp
ADDED
|
@@ -0,0 +1,2116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "ggml.h"
|
| 2 |
+
|
| 3 |
+
// third-party utilities
|
| 4 |
+
// use your favorite implementations
|
| 5 |
+
#define DR_WAV_IMPLEMENTATION
|
| 6 |
+
#include "dr_wav.h"
|
| 7 |
+
|
| 8 |
+
#include <algorithm>
|
| 9 |
+
#include <cassert>
|
| 10 |
+
#include <cmath>
|
| 11 |
+
#include <cstdio>
|
| 12 |
+
#include <cstring>
|
| 13 |
+
#include <fstream>
|
| 14 |
+
#include <map>
|
| 15 |
+
#include <string>
|
| 16 |
+
#include <thread>
|
| 17 |
+
#include <vector>
|
| 18 |
+
|
| 19 |
+
enum e_model {
|
| 20 |
+
MODEL_UNKNOWN,
|
| 21 |
+
MODEL_TINY,
|
| 22 |
+
MODEL_BASE,
|
| 23 |
+
MODEL_SMALL,
|
| 24 |
+
MODEL_MEDIUM,
|
| 25 |
+
MODEL_LARGE,
|
| 26 |
+
};
|
| 27 |
+
|
| 28 |
+
const size_t MB = 1024*1024;
|
| 29 |
+
|
| 30 |
+
const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
| 31 |
+
{ MODEL_TINY, 100ull*MB },
|
| 32 |
+
{ MODEL_BASE, 190ull*MB },
|
| 33 |
+
{ MODEL_SMALL, 610ull*MB },
|
| 34 |
+
{ MODEL_MEDIUM, 1900ull*MB },
|
| 35 |
+
{ MODEL_LARGE, 3600ull*MB },
|
| 36 |
+
};
|
| 37 |
+
|
| 38 |
+
const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
| 39 |
+
{ MODEL_TINY, 80ull*MB },
|
| 40 |
+
{ MODEL_BASE, 128ull*MB },
|
| 41 |
+
{ MODEL_SMALL, 300ull*MB },
|
| 42 |
+
{ MODEL_MEDIUM, 680ull*MB },
|
| 43 |
+
{ MODEL_LARGE, 1100ull*MB },
|
| 44 |
+
};
|
| 45 |
+
|
| 46 |
+
const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
| 47 |
+
{ MODEL_TINY, 170ull*MB },
|
| 48 |
+
{ MODEL_BASE, 230ull*MB },
|
| 49 |
+
{ MODEL_SMALL, 350ull*MB },
|
| 50 |
+
{ MODEL_MEDIUM, 450ull*MB },
|
| 51 |
+
{ MODEL_LARGE, 570ull*MB },
|
| 52 |
+
};
|
| 53 |
+
|
| 54 |
+
const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
| 55 |
+
{ MODEL_TINY, 190ull*MB },
|
| 56 |
+
{ MODEL_BASE, 190ull*MB },
|
| 57 |
+
{ MODEL_SMALL, 190ull*MB },
|
| 58 |
+
{ MODEL_MEDIUM, 200ull*MB },
|
| 59 |
+
{ MODEL_LARGE, 200ull*MB },
|
| 60 |
+
};
|
| 61 |
+
|
| 62 |
+
const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
|
| 63 |
+
{ MODEL_TINY, 32ull*MB },
|
| 64 |
+
{ MODEL_BASE, 44ull*MB },
|
| 65 |
+
{ MODEL_SMALL, 64ull*MB },
|
| 66 |
+
{ MODEL_MEDIUM, 84ull*MB },
|
| 67 |
+
{ MODEL_LARGE, 110ull*MB },
|
| 68 |
+
};
|
| 69 |
+
|
| 70 |
+
const int SAMPLE_RATE = 16000;
|
| 71 |
+
const int N_FFT = 400;
|
| 72 |
+
const int N_MEL = 80;
|
| 73 |
+
const int HOP_LENGTH = 160;
|
| 74 |
+
const int CHUNK_SIZE = 30; // seconds
|
| 75 |
+
|
| 76 |
+
struct whisper_mel {
|
| 77 |
+
int n_len;
|
| 78 |
+
int n_mel;
|
| 79 |
+
|
| 80 |
+
std::vector<float> data;
|
| 81 |
+
};
|
| 82 |
+
|
| 83 |
+
struct whisper_filters {
|
| 84 |
+
int32_t n_mel;
|
| 85 |
+
int32_t n_fft;
|
| 86 |
+
|
| 87 |
+
std::vector<float> data;
|
| 88 |
+
};
|
| 89 |
+
|
| 90 |
+
struct whisper_vocab {
|
| 91 |
+
using id = int32_t;
|
| 92 |
+
using token = std::string;
|
| 93 |
+
|
| 94 |
+
int n_vocab = 51864;
|
| 95 |
+
|
| 96 |
+
std::map<token, id> token_to_id;
|
| 97 |
+
std::map<id, token> id_to_token;
|
| 98 |
+
|
| 99 |
+
id token_eot = 50256;
|
| 100 |
+
id token_sot = 50257;
|
| 101 |
+
id token_prev = 50360;
|
| 102 |
+
id token_solm = 50361; // ??
|
| 103 |
+
id token_beg = 50363;
|
| 104 |
+
|
| 105 |
+
bool is_multilingual() const {
|
| 106 |
+
return n_vocab == 51865;
|
| 107 |
+
}
|
| 108 |
+
};
|
| 109 |
+
|
| 110 |
+
// command-line parameters
|
| 111 |
+
struct whisper_params {
|
| 112 |
+
int32_t seed = -1; // RNG seed
|
| 113 |
+
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
| 114 |
+
|
| 115 |
+
int32_t max_tokens_per_iter = 64;
|
| 116 |
+
|
| 117 |
+
bool verbose = false;
|
| 118 |
+
bool print_special_tokens = false;
|
| 119 |
+
|
| 120 |
+
std::string model = "models/whisper-tiny.en/ggml-model.bin"; // model path
|
| 121 |
+
|
| 122 |
+
std::string fname_inp = "default.wav";
|
| 123 |
+
};
|
| 124 |
+
|
| 125 |
+
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
| 126 |
+
|
| 127 |
+
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
| 128 |
+
for (int i = 1; i < argc; i++) {
|
| 129 |
+
std::string arg = argv[i];
|
| 130 |
+
|
| 131 |
+
if (arg == "-s" || arg == "--seed") {
|
| 132 |
+
params.seed = std::stoi(argv[++i]);
|
| 133 |
+
} else if (arg == "-t" || arg == "--threads") {
|
| 134 |
+
params.n_threads = std::stoi(argv[++i]);
|
| 135 |
+
} else if (arg == "-T" || arg == "--tokens") {
|
| 136 |
+
params.max_tokens_per_iter = std::stoi(argv[++i]);
|
| 137 |
+
} else if (arg == "-v" || arg == "--verbose") {
|
| 138 |
+
params.verbose = true;
|
| 139 |
+
} else if (arg == "-ps" || arg == "--print_special") {
|
| 140 |
+
params.print_special_tokens = true;
|
| 141 |
+
} else if (arg == "-m" || arg == "--model") {
|
| 142 |
+
params.model = argv[++i];
|
| 143 |
+
} else if (arg == "-f" || arg == "--file") {
|
| 144 |
+
params.fname_inp = argv[++i];
|
| 145 |
+
} else if (arg == "-h" || arg == "--help") {
|
| 146 |
+
whisper_print_usage(argc, argv, params);
|
| 147 |
+
exit(0);
|
| 148 |
+
} else {
|
| 149 |
+
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
| 150 |
+
whisper_print_usage(argc, argv, params);
|
| 151 |
+
exit(0);
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
return true;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
| 159 |
+
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
| 160 |
+
fprintf(stderr, "\n");
|
| 161 |
+
fprintf(stderr, "options:\n");
|
| 162 |
+
fprintf(stderr, " -h, --help show this help message and exit\n");
|
| 163 |
+
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
| 164 |
+
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
| 165 |
+
fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
|
| 166 |
+
fprintf(stderr, " -v, --verbose verbose output\n");
|
| 167 |
+
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
| 168 |
+
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
| 169 |
+
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
| 170 |
+
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
| 171 |
+
fprintf(stderr, " input WAV file path (default: %s)\n", params.fname_inp.c_str());
|
| 172 |
+
fprintf(stderr, "\n");
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
// medium
|
| 177 |
+
// hparams: {
|
| 178 |
+
// 'n_mels': 80,
|
| 179 |
+
// 'n_vocab': 51864,
|
| 180 |
+
// 'n_audio_ctx': 1500,
|
| 181 |
+
// 'n_audio_state': 1024,
|
| 182 |
+
// 'n_audio_head': 16,
|
| 183 |
+
// 'n_audio_layer': 24,
|
| 184 |
+
// 'n_text_ctx': 448,
|
| 185 |
+
// 'n_text_state': 1024,
|
| 186 |
+
// 'n_text_head': 16,
|
| 187 |
+
// 'n_text_layer': 24
|
| 188 |
+
// }
|
| 189 |
+
//
|
| 190 |
+
// default hparams (Whisper tiny)
|
| 191 |
+
struct whisper_hparams {
|
| 192 |
+
int32_t n_vocab = 51864;
|
| 193 |
+
int32_t n_audio_ctx = 1500;
|
| 194 |
+
int32_t n_audio_state = 384;
|
| 195 |
+
int32_t n_audio_head = 6;
|
| 196 |
+
int32_t n_audio_layer = 4;
|
| 197 |
+
int32_t n_text_ctx = 448;
|
| 198 |
+
int32_t n_text_state = 384;
|
| 199 |
+
int32_t n_text_head = 6;
|
| 200 |
+
int32_t n_text_layer = 4;
|
| 201 |
+
int32_t n_mels = 80;
|
| 202 |
+
int32_t f16 = 1;
|
| 203 |
+
};
|
| 204 |
+
|
| 205 |
+
// audio encoding layer
|
| 206 |
+
struct whisper_layer_encoder {
|
| 207 |
+
// encoder.blocks.*.attn_ln
|
| 208 |
+
struct ggml_tensor * attn_ln_0_w;
|
| 209 |
+
struct ggml_tensor * attn_ln_0_b;
|
| 210 |
+
|
| 211 |
+
// encoder.blocks.*.attn.out
|
| 212 |
+
struct ggml_tensor * attn_ln_1_w;
|
| 213 |
+
struct ggml_tensor * attn_ln_1_b;
|
| 214 |
+
|
| 215 |
+
// encoder.blocks.*.attn.query
|
| 216 |
+
struct ggml_tensor * attn_q_w;
|
| 217 |
+
struct ggml_tensor * attn_q_b;
|
| 218 |
+
|
| 219 |
+
// encoder.blocks.*.attn.key
|
| 220 |
+
struct ggml_tensor * attn_k_w;
|
| 221 |
+
|
| 222 |
+
// encoder.blocks.*.attn.value
|
| 223 |
+
struct ggml_tensor * attn_v_w;
|
| 224 |
+
struct ggml_tensor * attn_v_b;
|
| 225 |
+
|
| 226 |
+
// encoder.blocks.*.mlp_ln
|
| 227 |
+
struct ggml_tensor * mlp_ln_w;
|
| 228 |
+
struct ggml_tensor * mlp_ln_b;
|
| 229 |
+
|
| 230 |
+
// encoder.blocks.*.mlp.0
|
| 231 |
+
struct ggml_tensor * mlp_0_w;
|
| 232 |
+
struct ggml_tensor * mlp_0_b;
|
| 233 |
+
|
| 234 |
+
// encoder.blocks.*.mlp.2
|
| 235 |
+
struct ggml_tensor * mlp_1_w;
|
| 236 |
+
struct ggml_tensor * mlp_1_b;
|
| 237 |
+
};
|
| 238 |
+
|
| 239 |
+
// token decoding layer
|
| 240 |
+
struct whisper_layer_decoder {
|
| 241 |
+
// decoder.blocks.*.attn_ln
|
| 242 |
+
struct ggml_tensor * attn_ln_0_w;
|
| 243 |
+
struct ggml_tensor * attn_ln_0_b;
|
| 244 |
+
|
| 245 |
+
// decoder.blocks.*.attn.out
|
| 246 |
+
struct ggml_tensor * attn_ln_1_w;
|
| 247 |
+
struct ggml_tensor * attn_ln_1_b;
|
| 248 |
+
|
| 249 |
+
// decoder.blocks.*.attn.query
|
| 250 |
+
struct ggml_tensor * attn_q_w;
|
| 251 |
+
struct ggml_tensor * attn_q_b;
|
| 252 |
+
|
| 253 |
+
// decoder.blocks.*.attn.key
|
| 254 |
+
struct ggml_tensor * attn_k_w;
|
| 255 |
+
|
| 256 |
+
// decoder.blocks.*.attn.value
|
| 257 |
+
struct ggml_tensor * attn_v_w;
|
| 258 |
+
struct ggml_tensor * attn_v_b;
|
| 259 |
+
|
| 260 |
+
// decoder.blocks.*.cross_attn_ln
|
| 261 |
+
struct ggml_tensor * cross_attn_ln_0_w;
|
| 262 |
+
struct ggml_tensor * cross_attn_ln_0_b;
|
| 263 |
+
|
| 264 |
+
// decoder.blocks.*.cross_attn.out
|
| 265 |
+
struct ggml_tensor * cross_attn_ln_1_w;
|
| 266 |
+
struct ggml_tensor * cross_attn_ln_1_b;
|
| 267 |
+
|
| 268 |
+
// decoder.blocks.*.cross_attn.query
|
| 269 |
+
struct ggml_tensor * cross_attn_q_w;
|
| 270 |
+
struct ggml_tensor * cross_attn_q_b;
|
| 271 |
+
|
| 272 |
+
// decoder.blocks.*.cross_attn.key
|
| 273 |
+
struct ggml_tensor * cross_attn_k_w;
|
| 274 |
+
|
| 275 |
+
// decoder.blocks.*.cross_attn.value
|
| 276 |
+
struct ggml_tensor * cross_attn_v_w;
|
| 277 |
+
struct ggml_tensor * cross_attn_v_b;
|
| 278 |
+
|
| 279 |
+
// decoder.blocks.*.mlp_ln
|
| 280 |
+
struct ggml_tensor * mlp_ln_w;
|
| 281 |
+
struct ggml_tensor * mlp_ln_b;
|
| 282 |
+
|
| 283 |
+
// decoder.blocks.*.mlp.0
|
| 284 |
+
struct ggml_tensor * mlp_0_w;
|
| 285 |
+
struct ggml_tensor * mlp_0_b;
|
| 286 |
+
|
| 287 |
+
// decoder.blocks.*.mlp.2
|
| 288 |
+
struct ggml_tensor * mlp_1_w;
|
| 289 |
+
struct ggml_tensor * mlp_1_b;
|
| 290 |
+
};
|
| 291 |
+
|
| 292 |
+
struct whisper_model {
|
| 293 |
+
e_model type = MODEL_UNKNOWN;
|
| 294 |
+
|
| 295 |
+
whisper_hparams hparams;
|
| 296 |
+
whisper_filters filters;
|
| 297 |
+
|
| 298 |
+
// encoder.positional_embedding
|
| 299 |
+
struct ggml_tensor * e_pe;
|
| 300 |
+
|
| 301 |
+
// encoder.conv1
|
| 302 |
+
struct ggml_tensor * e_conv_1_w;
|
| 303 |
+
struct ggml_tensor * e_conv_1_b;
|
| 304 |
+
|
| 305 |
+
// encoder.conv2
|
| 306 |
+
struct ggml_tensor * e_conv_2_w;
|
| 307 |
+
struct ggml_tensor * e_conv_2_b;
|
| 308 |
+
|
| 309 |
+
// encoder.ln_post
|
| 310 |
+
struct ggml_tensor * e_ln_w;
|
| 311 |
+
struct ggml_tensor * e_ln_b;
|
| 312 |
+
|
| 313 |
+
// decoder.positional_embedding
|
| 314 |
+
struct ggml_tensor * d_pe; // DD
|
| 315 |
+
|
| 316 |
+
// decoder.token_embedding
|
| 317 |
+
struct ggml_tensor * d_te; // DD
|
| 318 |
+
|
| 319 |
+
// decoder.ln
|
| 320 |
+
struct ggml_tensor * d_ln_w; // DD
|
| 321 |
+
struct ggml_tensor * d_ln_b; // DD
|
| 322 |
+
|
| 323 |
+
std::vector<whisper_layer_encoder> layers_encoder;
|
| 324 |
+
std::vector<whisper_layer_decoder> layers_decoder;
|
| 325 |
+
|
| 326 |
+
// key + value memory
|
| 327 |
+
struct ggml_tensor * memory_k;
|
| 328 |
+
struct ggml_tensor * memory_v;
|
| 329 |
+
|
| 330 |
+
struct ggml_tensor * memory_cross_k;
|
| 331 |
+
struct ggml_tensor * memory_cross_v;
|
| 332 |
+
|
| 333 |
+
//
|
| 334 |
+
struct ggml_context * ctx;
|
| 335 |
+
std::map<std::string, struct ggml_tensor *> tensors;
|
| 336 |
+
};
|
| 337 |
+
|
| 338 |
+
// load the model from a ggml file
|
| 339 |
+
//
|
| 340 |
+
// file format:
|
| 341 |
+
//
|
| 342 |
+
// - hparams
|
| 343 |
+
// - pre-computed mel filters
|
| 344 |
+
// - vocab
|
| 345 |
+
// - weights
|
| 346 |
+
//
|
| 347 |
+
// see the convert-pt-to-ggml.py script for details
|
| 348 |
+
//
|
| 349 |
+
bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) {
|
| 350 |
+
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
| 351 |
+
|
| 352 |
+
auto fin = std::ifstream(fname, std::ios::binary);
|
| 353 |
+
if (!fin) {
|
| 354 |
+
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
| 355 |
+
return false;
|
| 356 |
+
}
|
| 357 |
+
|
| 358 |
+
// verify magic
|
| 359 |
+
{
|
| 360 |
+
uint32_t magic;
|
| 361 |
+
fin.read((char *) &magic, sizeof(magic));
|
| 362 |
+
if (magic != 0x67676d6c) {
|
| 363 |
+
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
| 364 |
+
return false;
|
| 365 |
+
}
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
//load hparams
|
| 369 |
+
{
|
| 370 |
+
auto & hparams = model.hparams;
|
| 371 |
+
|
| 372 |
+
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
| 373 |
+
fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
| 374 |
+
fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
| 375 |
+
fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
| 376 |
+
fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
| 377 |
+
fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
| 378 |
+
fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
| 379 |
+
fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
| 380 |
+
fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
| 381 |
+
fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
| 382 |
+
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
| 383 |
+
|
| 384 |
+
assert(hparams.n_text_state == hparams.n_audio_state);
|
| 385 |
+
|
| 386 |
+
if (hparams.n_audio_layer == 4) {
|
| 387 |
+
model.type = e_model::MODEL_TINY;
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
if (hparams.n_audio_layer == 6) {
|
| 391 |
+
model.type = e_model::MODEL_BASE;
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
if (hparams.n_audio_layer == 12) {
|
| 395 |
+
model.type = e_model::MODEL_SMALL;
|
| 396 |
+
}
|
| 397 |
+
|
| 398 |
+
if (hparams.n_audio_layer == 24) {
|
| 399 |
+
model.type = e_model::MODEL_MEDIUM;
|
| 400 |
+
}
|
| 401 |
+
|
| 402 |
+
if (hparams.n_audio_layer == 32) {
|
| 403 |
+
model.type = e_model::MODEL_LARGE;
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
| 407 |
+
printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
| 408 |
+
printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
|
| 409 |
+
printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
|
| 410 |
+
printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
|
| 411 |
+
printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
|
| 412 |
+
printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
|
| 413 |
+
printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
| 414 |
+
printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
| 415 |
+
printf("%s: n_mels = %d\n", __func__, hparams.n_mels);
|
| 416 |
+
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
| 417 |
+
printf("%s: type = %d\n", __func__, model.type);
|
| 418 |
+
|
| 419 |
+
const size_t mem_required =
|
| 420 |
+
MEM_REQ_MODEL.at(model.type) +
|
| 421 |
+
MEM_REQ_ENCODE.at(model.type) +
|
| 422 |
+
MEM_REQ_ENCODE_LAYER.at(model.type) +
|
| 423 |
+
MEM_REQ_DECODE.at(model.type) +
|
| 424 |
+
MEM_REQ_DECODE_LAYER.at(model.type);
|
| 425 |
+
|
| 426 |
+
printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
// load mel filters
|
| 430 |
+
{
|
| 431 |
+
auto & filters = model.filters;
|
| 432 |
+
|
| 433 |
+
fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
|
| 434 |
+
fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
|
| 435 |
+
|
| 436 |
+
filters.data.resize(filters.n_mel * filters.n_fft);
|
| 437 |
+
fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
|
| 438 |
+
}
|
| 439 |
+
|
| 440 |
+
// load vocab
|
| 441 |
+
{
|
| 442 |
+
int32_t n_vocab = 0;
|
| 443 |
+
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
| 444 |
+
|
| 445 |
+
//if (n_vocab != model.hparams.n_vocab) {
|
| 446 |
+
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
| 447 |
+
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
| 448 |
+
// return false;
|
| 449 |
+
//}
|
| 450 |
+
|
| 451 |
+
std::string word;
|
| 452 |
+
for (int i = 0; i < n_vocab; i++) {
|
| 453 |
+
uint32_t len;
|
| 454 |
+
fin.read((char *) &len, sizeof(len));
|
| 455 |
+
|
| 456 |
+
word.resize(len);
|
| 457 |
+
fin.read((char *) word.data(), len);
|
| 458 |
+
|
| 459 |
+
vocab.token_to_id[word] = i;
|
| 460 |
+
vocab.id_to_token[i] = word;
|
| 461 |
+
|
| 462 |
+
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
vocab.n_vocab = model.hparams.n_vocab;
|
| 466 |
+
if (vocab.is_multilingual()) {
|
| 467 |
+
vocab.token_eot++;
|
| 468 |
+
vocab.token_sot++;
|
| 469 |
+
vocab.token_prev++;
|
| 470 |
+
vocab.token_solm++;
|
| 471 |
+
vocab.token_beg++;
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
if (n_vocab < model.hparams.n_vocab) {
|
| 475 |
+
printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
|
| 476 |
+
for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
|
| 477 |
+
if (i > vocab.token_beg) {
|
| 478 |
+
word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
|
| 479 |
+
} else if (i == vocab.token_eot) {
|
| 480 |
+
word = "[_EOT_]";
|
| 481 |
+
} else if (i == vocab.token_sot) {
|
| 482 |
+
word = "[_SOT_]";
|
| 483 |
+
} else if (i == vocab.token_prev) {
|
| 484 |
+
word = "[_PREV_]";
|
| 485 |
+
} else if (i == vocab.token_beg) {
|
| 486 |
+
word = "[_BEG_]";
|
| 487 |
+
} else {
|
| 488 |
+
word = "[_extra_token_" + std::to_string(i) + "]";
|
| 489 |
+
}
|
| 490 |
+
vocab.token_to_id[word] = i;
|
| 491 |
+
vocab.id_to_token[i] = word;
|
| 492 |
+
}
|
| 493 |
+
}
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
// for the big tensors, we have the option to store the data in 16-bit floats
|
| 497 |
+
// in order to save memory and also to speed up the computation
|
| 498 |
+
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
| 499 |
+
|
| 500 |
+
auto & ctx = model.ctx;
|
| 501 |
+
|
| 502 |
+
size_t ctx_size = 0;
|
| 503 |
+
|
| 504 |
+
{
|
| 505 |
+
const auto & hparams = model.hparams;
|
| 506 |
+
|
| 507 |
+
const int n_vocab = hparams.n_vocab;
|
| 508 |
+
|
| 509 |
+
const int n_audio_ctx = hparams.n_audio_ctx;
|
| 510 |
+
const int n_audio_state = hparams.n_audio_state;
|
| 511 |
+
const int n_audio_layer = hparams.n_audio_layer;
|
| 512 |
+
|
| 513 |
+
const int n_text_ctx = hparams.n_text_ctx;
|
| 514 |
+
const int n_text_state = hparams.n_text_state;
|
| 515 |
+
const int n_text_layer = hparams.n_text_layer;
|
| 516 |
+
|
| 517 |
+
const int n_mels = hparams.n_mels;
|
| 518 |
+
|
| 519 |
+
// encoder
|
| 520 |
+
{
|
| 521 |
+
// TODO: F16 .. maybe not?
|
| 522 |
+
ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
|
| 523 |
+
|
| 524 |
+
ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
|
| 525 |
+
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
|
| 526 |
+
|
| 527 |
+
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
|
| 528 |
+
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
|
| 529 |
+
|
| 530 |
+
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
|
| 531 |
+
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
// decoder
|
| 535 |
+
{
|
| 536 |
+
// TODO: F16 .. maybe not?
|
| 537 |
+
ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
|
| 538 |
+
|
| 539 |
+
ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
|
| 540 |
+
|
| 541 |
+
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
|
| 542 |
+
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
|
| 543 |
+
}
|
| 544 |
+
|
| 545 |
+
// encoder layers
|
| 546 |
+
{
|
| 547 |
+
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
| 548 |
+
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
| 549 |
+
|
| 550 |
+
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
|
| 551 |
+
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
| 552 |
+
|
| 553 |
+
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
|
| 554 |
+
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
| 555 |
+
|
| 556 |
+
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
| 557 |
+
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
| 558 |
+
|
| 559 |
+
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
|
| 560 |
+
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
| 561 |
+
|
| 562 |
+
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
|
| 563 |
+
|
| 564 |
+
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
|
| 565 |
+
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
| 566 |
+
|
| 567 |
+
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
|
| 568 |
+
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
| 569 |
+
}
|
| 570 |
+
|
| 571 |
+
// decoder layers
|
| 572 |
+
{
|
| 573 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
| 574 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
| 575 |
+
|
| 576 |
+
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
|
| 577 |
+
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
| 578 |
+
|
| 579 |
+
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
|
| 580 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
| 581 |
+
|
| 582 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
| 583 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
| 584 |
+
|
| 585 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
|
| 586 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
| 587 |
+
|
| 588 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
|
| 589 |
+
|
| 590 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
|
| 591 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
| 592 |
+
|
| 593 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
|
| 594 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
| 595 |
+
//
|
| 596 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
|
| 597 |
+
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
|
| 598 |
+
|
| 599 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
|
| 600 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
|
| 601 |
+
|
| 602 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
|
| 603 |
+
|
| 604 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
|
| 605 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
|
| 606 |
+
|
| 607 |
+
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
|
| 608 |
+
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
| 609 |
+
}
|
| 610 |
+
|
| 611 |
+
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_k
|
| 612 |
+
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_v
|
| 613 |
+
|
| 614 |
+
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_k
|
| 615 |
+
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_v
|
| 616 |
+
|
| 617 |
+
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
| 618 |
+
|
| 619 |
+
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
// create the ggml context
|
| 623 |
+
{
|
| 624 |
+
struct ggml_init_params params = {
|
| 625 |
+
.mem_size = ctx_size,
|
| 626 |
+
.mem_buffer = NULL,
|
| 627 |
+
};
|
| 628 |
+
|
| 629 |
+
model.ctx = ggml_init(params);
|
| 630 |
+
if (!model.ctx) {
|
| 631 |
+
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
| 632 |
+
return false;
|
| 633 |
+
}
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
// prepare memory for the weights
|
| 637 |
+
{
|
| 638 |
+
const auto & hparams = model.hparams;
|
| 639 |
+
|
| 640 |
+
const int n_vocab = hparams.n_vocab;
|
| 641 |
+
|
| 642 |
+
const int n_audio_ctx = hparams.n_audio_ctx;
|
| 643 |
+
const int n_audio_state = hparams.n_audio_state;
|
| 644 |
+
const int n_audio_layer = hparams.n_audio_layer;
|
| 645 |
+
|
| 646 |
+
const int n_text_ctx = hparams.n_text_ctx;
|
| 647 |
+
const int n_text_state = hparams.n_text_state;
|
| 648 |
+
const int n_text_layer = hparams.n_text_layer;
|
| 649 |
+
|
| 650 |
+
const int n_mels = hparams.n_mels;
|
| 651 |
+
|
| 652 |
+
model.layers_encoder.resize(n_audio_layer);
|
| 653 |
+
model.layers_decoder.resize(n_text_layer);
|
| 654 |
+
|
| 655 |
+
// encoder
|
| 656 |
+
{
|
| 657 |
+
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
| 658 |
+
|
| 659 |
+
model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
|
| 660 |
+
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
| 661 |
+
|
| 662 |
+
model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
|
| 663 |
+
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
| 664 |
+
|
| 665 |
+
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 666 |
+
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 667 |
+
|
| 668 |
+
// map by name
|
| 669 |
+
model.tensors["encoder.positional_embedding"] = model.e_pe;
|
| 670 |
+
|
| 671 |
+
model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
|
| 672 |
+
model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
|
| 673 |
+
|
| 674 |
+
model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
|
| 675 |
+
model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
|
| 676 |
+
|
| 677 |
+
model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
|
| 678 |
+
model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
|
| 679 |
+
|
| 680 |
+
for (int i = 0; i < n_audio_layer; ++i) {
|
| 681 |
+
auto & layer = model.layers_encoder[i];
|
| 682 |
+
|
| 683 |
+
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 684 |
+
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 685 |
+
|
| 686 |
+
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
|
| 687 |
+
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
|
| 688 |
+
|
| 689 |
+
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
|
| 690 |
+
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 691 |
+
|
| 692 |
+
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 693 |
+
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 694 |
+
|
| 695 |
+
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
| 696 |
+
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 697 |
+
|
| 698 |
+
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
| 699 |
+
|
| 700 |
+
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
| 701 |
+
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 702 |
+
|
| 703 |
+
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
| 704 |
+
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
| 705 |
+
|
| 706 |
+
// map by name
|
| 707 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
| 708 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
| 709 |
+
|
| 710 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
| 711 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
| 712 |
+
|
| 713 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
| 714 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
| 715 |
+
|
| 716 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
| 717 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
| 718 |
+
|
| 719 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
| 720 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
| 721 |
+
|
| 722 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
| 723 |
+
|
| 724 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
| 725 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
| 726 |
+
|
| 727 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
| 728 |
+
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
| 729 |
+
}
|
| 730 |
+
}
|
| 731 |
+
|
| 732 |
+
// decoder
|
| 733 |
+
{
|
| 734 |
+
model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
|
| 735 |
+
|
| 736 |
+
model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
|
| 737 |
+
|
| 738 |
+
model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 739 |
+
model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 740 |
+
|
| 741 |
+
// map by name
|
| 742 |
+
model.tensors["decoder.positional_embedding"] = model.d_pe;
|
| 743 |
+
|
| 744 |
+
model.tensors["decoder.token_embedding.weight"] = model.d_te;
|
| 745 |
+
|
| 746 |
+
model.tensors["decoder.ln.weight"] = model.d_ln_w;
|
| 747 |
+
model.tensors["decoder.ln.bias"] = model.d_ln_b;
|
| 748 |
+
|
| 749 |
+
for (int i = 0; i < n_text_layer; ++i) {
|
| 750 |
+
auto & layer = model.layers_decoder[i];
|
| 751 |
+
|
| 752 |
+
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 753 |
+
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 754 |
+
|
| 755 |
+
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
|
| 756 |
+
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
|
| 757 |
+
|
| 758 |
+
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
|
| 759 |
+
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 760 |
+
|
| 761 |
+
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 762 |
+
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 763 |
+
|
| 764 |
+
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 765 |
+
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 766 |
+
|
| 767 |
+
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 768 |
+
|
| 769 |
+
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 770 |
+
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 771 |
+
|
| 772 |
+
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 773 |
+
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 774 |
+
|
| 775 |
+
layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 776 |
+
layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 777 |
+
|
| 778 |
+
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 779 |
+
layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 780 |
+
|
| 781 |
+
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 782 |
+
|
| 783 |
+
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 784 |
+
layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 785 |
+
|
| 786 |
+
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
| 787 |
+
layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
| 788 |
+
|
| 789 |
+
// map by name
|
| 790 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
| 791 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
| 792 |
+
|
| 793 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
| 794 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
| 795 |
+
|
| 796 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
| 797 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
| 798 |
+
|
| 799 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
| 800 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
| 801 |
+
|
| 802 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
| 803 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
| 804 |
+
|
| 805 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
| 806 |
+
|
| 807 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
| 808 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
| 809 |
+
|
| 810 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
| 811 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
| 812 |
+
|
| 813 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
|
| 814 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
|
| 815 |
+
|
| 816 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
|
| 817 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
|
| 818 |
+
|
| 819 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
|
| 820 |
+
|
| 821 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
|
| 822 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
|
| 823 |
+
|
| 824 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
|
| 825 |
+
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
|
| 826 |
+
}
|
| 827 |
+
}
|
| 828 |
+
}
|
| 829 |
+
|
| 830 |
+
// key + value memory
|
| 831 |
+
{
|
| 832 |
+
const auto & hparams = model.hparams;
|
| 833 |
+
|
| 834 |
+
const int n_text_state = hparams.n_text_state;
|
| 835 |
+
const int n_text_layer = hparams.n_text_layer;
|
| 836 |
+
const int n_text_ctx = hparams.n_text_ctx;
|
| 837 |
+
|
| 838 |
+
{
|
| 839 |
+
const int n_mem = n_text_layer*n_text_ctx;
|
| 840 |
+
const int n_elements = n_text_state*n_mem;
|
| 841 |
+
|
| 842 |
+
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 843 |
+
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 844 |
+
}
|
| 845 |
+
|
| 846 |
+
{
|
| 847 |
+
const int n_audio_ctx = hparams.n_audio_ctx;
|
| 848 |
+
|
| 849 |
+
const int n_mem = n_text_layer*n_audio_ctx;
|
| 850 |
+
const int n_elements = n_text_state*n_mem;
|
| 851 |
+
|
| 852 |
+
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 853 |
+
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 854 |
+
}
|
| 855 |
+
|
| 856 |
+
const size_t memory_size =
|
| 857 |
+
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
| 858 |
+
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
| 859 |
+
|
| 860 |
+
printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
|
| 861 |
+
}
|
| 862 |
+
|
| 863 |
+
// load weights
|
| 864 |
+
{
|
| 865 |
+
size_t total_size = 0;
|
| 866 |
+
|
| 867 |
+
while (true) {
|
| 868 |
+
int32_t n_dims;
|
| 869 |
+
int32_t length;
|
| 870 |
+
int32_t ftype;
|
| 871 |
+
|
| 872 |
+
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
| 873 |
+
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
| 874 |
+
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
| 875 |
+
|
| 876 |
+
if (fin.eof()) {
|
| 877 |
+
break;
|
| 878 |
+
}
|
| 879 |
+
|
| 880 |
+
int32_t nelements = 1;
|
| 881 |
+
int32_t ne[3] = { 1, 1, 1 };
|
| 882 |
+
for (int i = 0; i < n_dims; ++i) {
|
| 883 |
+
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
| 884 |
+
nelements *= ne[i];
|
| 885 |
+
}
|
| 886 |
+
|
| 887 |
+
std::string name(length, 0);
|
| 888 |
+
fin.read(&name[0], length);
|
| 889 |
+
|
| 890 |
+
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
| 891 |
+
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
| 892 |
+
return false;
|
| 893 |
+
}
|
| 894 |
+
|
| 895 |
+
auto tensor = model.tensors[name.data()];
|
| 896 |
+
if (ggml_nelements(tensor) != nelements) {
|
| 897 |
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
| 898 |
+
return false;
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
|
| 902 |
+
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
|
| 903 |
+
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
|
| 904 |
+
return false;
|
| 905 |
+
}
|
| 906 |
+
|
| 907 |
+
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
| 908 |
+
|
| 909 |
+
if (nelements*bpe != ggml_nbytes(tensor)) {
|
| 910 |
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
| 911 |
+
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
| 912 |
+
return false;
|
| 913 |
+
}
|
| 914 |
+
|
| 915 |
+
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
| 916 |
+
|
| 917 |
+
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
| 918 |
+
total_size += ggml_nbytes(tensor);
|
| 919 |
+
}
|
| 920 |
+
|
| 921 |
+
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
+
fin.close();
|
| 925 |
+
|
| 926 |
+
return true;
|
| 927 |
+
}
|
| 928 |
+
|
| 929 |
+
// evaluate the encoder
|
| 930 |
+
//
|
| 931 |
+
// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
|
| 932 |
+
// part of the transformer model and returns the encoded features
|
| 933 |
+
//
|
| 934 |
+
// - model: the model
|
| 935 |
+
// - n_threads: number of threads to use
|
| 936 |
+
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
|
| 937 |
+
// - mel_inp: input mel spectrogram
|
| 938 |
+
// - features: output encoded features
|
| 939 |
+
//
|
| 940 |
+
bool whisper_encode(
|
| 941 |
+
const whisper_model & model,
|
| 942 |
+
const int n_threads,
|
| 943 |
+
const int mel_offset,
|
| 944 |
+
const whisper_mel & mel_inp,
|
| 945 |
+
std::vector<float> & features) {
|
| 946 |
+
const auto & hparams = model.hparams;
|
| 947 |
+
|
| 948 |
+
const int n_vocab = hparams.n_vocab;
|
| 949 |
+
|
| 950 |
+
const int n_ctx = hparams.n_audio_ctx;
|
| 951 |
+
const int n_state = hparams.n_audio_state;
|
| 952 |
+
const int n_head = hparams.n_audio_head;
|
| 953 |
+
const int n_layer = hparams.n_audio_layer;
|
| 954 |
+
|
| 955 |
+
const int N = n_ctx;
|
| 956 |
+
|
| 957 |
+
const int n_mels = hparams.n_mels;
|
| 958 |
+
assert(mel_inp.n_mel == n_mels);
|
| 959 |
+
|
| 960 |
+
struct ggml_init_params params;
|
| 961 |
+
|
| 962 |
+
{
|
| 963 |
+
static size_t buf_size = MEM_REQ_ENCODE.at(model.type);
|
| 964 |
+
static void * buf = malloc(buf_size);
|
| 965 |
+
|
| 966 |
+
params = {
|
| 967 |
+
.mem_size = buf_size,
|
| 968 |
+
.mem_buffer = buf,
|
| 969 |
+
};
|
| 970 |
+
}
|
| 971 |
+
|
| 972 |
+
struct ggml_context * ctx0 = ggml_init(params);
|
| 973 |
+
|
| 974 |
+
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
|
| 975 |
+
assert(mel->type == GGML_TYPE_F32);
|
| 976 |
+
{
|
| 977 |
+
float * dst = (float *) mel->data;
|
| 978 |
+
memset(dst, 0, ggml_nbytes(mel));
|
| 979 |
+
|
| 980 |
+
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
| 981 |
+
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
|
| 982 |
+
|
| 983 |
+
for (int j = 0; j < mel_inp.n_mel; ++j) {
|
| 984 |
+
for (int i = i0; i < i1; ++i) {
|
| 985 |
+
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
|
| 986 |
+
}
|
| 987 |
+
}
|
| 988 |
+
}
|
| 989 |
+
|
| 990 |
+
struct ggml_tensor * cur;
|
| 991 |
+
|
| 992 |
+
// convolution + gelu
|
| 993 |
+
{
|
| 994 |
+
cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
|
| 995 |
+
cur = ggml_add(ctx0,
|
| 996 |
+
ggml_repeat(ctx0,
|
| 997 |
+
model.e_conv_1_b,
|
| 998 |
+
cur),
|
| 999 |
+
cur);
|
| 1000 |
+
|
| 1001 |
+
cur = ggml_gelu(ctx0, cur);
|
| 1002 |
+
|
| 1003 |
+
cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
|
| 1004 |
+
cur = ggml_add(ctx0,
|
| 1005 |
+
ggml_repeat(ctx0,
|
| 1006 |
+
model.e_conv_2_b,
|
| 1007 |
+
cur),
|
| 1008 |
+
cur);
|
| 1009 |
+
|
| 1010 |
+
cur = ggml_gelu(ctx0, cur);
|
| 1011 |
+
}
|
| 1012 |
+
|
| 1013 |
+
cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
|
| 1014 |
+
|
| 1015 |
+
struct ggml_tensor * inpL = cur;
|
| 1016 |
+
|
| 1017 |
+
for (int il = 0; il < n_layer; ++il) {
|
| 1018 |
+
const auto & layer = model.layers_encoder[il];
|
| 1019 |
+
|
| 1020 |
+
// create separate context for each layer to reduce memory usage
|
| 1021 |
+
|
| 1022 |
+
struct ggml_init_params paramsL;
|
| 1023 |
+
{
|
| 1024 |
+
static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type);
|
| 1025 |
+
static void * buf = malloc(buf_size);
|
| 1026 |
+
|
| 1027 |
+
paramsL = {
|
| 1028 |
+
.mem_size = buf_size,
|
| 1029 |
+
.mem_buffer = buf,
|
| 1030 |
+
};
|
| 1031 |
+
}
|
| 1032 |
+
|
| 1033 |
+
struct ggml_context * ctxL = ggml_init(paramsL);
|
| 1034 |
+
|
| 1035 |
+
// norm
|
| 1036 |
+
{
|
| 1037 |
+
cur = ggml_norm(ctxL, inpL);
|
| 1038 |
+
|
| 1039 |
+
// cur = ln_0_w*cur + ln_0_b
|
| 1040 |
+
cur = ggml_add(ctxL,
|
| 1041 |
+
ggml_mul(ctxL,
|
| 1042 |
+
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
| 1043 |
+
cur),
|
| 1044 |
+
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
| 1045 |
+
}
|
| 1046 |
+
|
| 1047 |
+
// self-attention
|
| 1048 |
+
{
|
| 1049 |
+
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
| 1050 |
+
layer.attn_q_w,
|
| 1051 |
+
cur);
|
| 1052 |
+
|
| 1053 |
+
Qcur = ggml_add(ctxL,
|
| 1054 |
+
ggml_repeat(ctxL,
|
| 1055 |
+
layer.attn_q_b,
|
| 1056 |
+
Qcur),
|
| 1057 |
+
Qcur);
|
| 1058 |
+
|
| 1059 |
+
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
| 1060 |
+
|
| 1061 |
+
// no bias for Key
|
| 1062 |
+
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
| 1063 |
+
layer.attn_k_w,
|
| 1064 |
+
cur);
|
| 1065 |
+
|
| 1066 |
+
Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
| 1067 |
+
|
| 1068 |
+
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
| 1069 |
+
layer.attn_v_w,
|
| 1070 |
+
cur);
|
| 1071 |
+
|
| 1072 |
+
Vcur = ggml_add(ctxL,
|
| 1073 |
+
ggml_repeat(ctxL,
|
| 1074 |
+
layer.attn_v_b,
|
| 1075 |
+
Vcur),
|
| 1076 |
+
Vcur);
|
| 1077 |
+
|
| 1078 |
+
// ------
|
| 1079 |
+
|
| 1080 |
+
struct ggml_tensor * Q =
|
| 1081 |
+
ggml_permute(ctxL,
|
| 1082 |
+
ggml_cpy(ctxL,
|
| 1083 |
+
Qcur,
|
| 1084 |
+
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
| 1085 |
+
0, 2, 1, 3);
|
| 1086 |
+
|
| 1087 |
+
struct ggml_tensor * K =
|
| 1088 |
+
ggml_permute(ctxL,
|
| 1089 |
+
ggml_cpy(ctxL,
|
| 1090 |
+
Kcur,
|
| 1091 |
+
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // F16 !
|
| 1092 |
+
0, 2, 1, 3);
|
| 1093 |
+
|
| 1094 |
+
//// BLAS attempt
|
| 1095 |
+
//struct ggml_tensor * KQ =
|
| 1096 |
+
// ggml_mul_mat(ctxL,
|
| 1097 |
+
// ggml_cpy(ctxL, K, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)),
|
| 1098 |
+
// ggml_cpy(ctxL, Q, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)));
|
| 1099 |
+
|
| 1100 |
+
// K * Q
|
| 1101 |
+
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
| 1102 |
+
|
| 1103 |
+
//struct ggml_tensor * K =
|
| 1104 |
+
// ggml_cpy(ctxL,
|
| 1105 |
+
// ggml_permute(ctxL,
|
| 1106 |
+
// ggml_reshape_3d(ctxL,
|
| 1107 |
+
// Kcur,
|
| 1108 |
+
// n_state/n_head, n_head, N),
|
| 1109 |
+
// 1, 2, 0, 3),
|
| 1110 |
+
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
|
| 1111 |
+
// );
|
| 1112 |
+
|
| 1113 |
+
//// K * Q
|
| 1114 |
+
//struct ggml_tensor * KQ = ggml_mul_mat(ctxL, ggml_transpose(ctxL, K), Q);
|
| 1115 |
+
|
| 1116 |
+
//struct ggml_tensor * KQ_scaled =
|
| 1117 |
+
// ggml_scale(ctxL,
|
| 1118 |
+
// KQ,
|
| 1119 |
+
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
| 1120 |
+
// );
|
| 1121 |
+
|
| 1122 |
+
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
|
| 1123 |
+
|
| 1124 |
+
//struct ggml_tensor * V_trans =
|
| 1125 |
+
// ggml_permute(ctxL,
|
| 1126 |
+
// ggml_cpy(ctxL,
|
| 1127 |
+
// Vcur,
|
| 1128 |
+
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
| 1129 |
+
// 1, 2, 0, 3);
|
| 1130 |
+
|
| 1131 |
+
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
| 1132 |
+
|
| 1133 |
+
struct ggml_tensor * V =
|
| 1134 |
+
ggml_cpy(ctxL,
|
| 1135 |
+
ggml_permute(ctxL,
|
| 1136 |
+
ggml_reshape_3d(ctxL,
|
| 1137 |
+
Vcur,
|
| 1138 |
+
n_state/n_head, n_head, N),
|
| 1139 |
+
0, 2, 1, 3),
|
| 1140 |
+
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) // F16 !
|
| 1141 |
+
);
|
| 1142 |
+
|
| 1143 |
+
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
|
| 1144 |
+
|
| 1145 |
+
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
| 1146 |
+
|
| 1147 |
+
cur = ggml_cpy(ctxL,
|
| 1148 |
+
KQV_merged,
|
| 1149 |
+
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
| 1150 |
+
}
|
| 1151 |
+
|
| 1152 |
+
// projection
|
| 1153 |
+
{
|
| 1154 |
+
cur = ggml_mul_mat(ctxL,
|
| 1155 |
+
layer.attn_ln_1_w,
|
| 1156 |
+
cur);
|
| 1157 |
+
|
| 1158 |
+
cur = ggml_add(ctxL,
|
| 1159 |
+
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
| 1160 |
+
cur);
|
| 1161 |
+
}
|
| 1162 |
+
|
| 1163 |
+
// add the input
|
| 1164 |
+
cur = ggml_add(ctxL, cur, inpL);
|
| 1165 |
+
|
| 1166 |
+
struct ggml_tensor * inpFF = cur;
|
| 1167 |
+
|
| 1168 |
+
// feed-forward network
|
| 1169 |
+
{
|
| 1170 |
+
// norm
|
| 1171 |
+
{
|
| 1172 |
+
cur = ggml_norm(ctxL, inpFF);
|
| 1173 |
+
|
| 1174 |
+
// cur = mlp_ln_w*cur + mlp_ln_b
|
| 1175 |
+
cur = ggml_add(ctxL,
|
| 1176 |
+
ggml_mul(ctxL,
|
| 1177 |
+
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
| 1178 |
+
cur),
|
| 1179 |
+
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
| 1180 |
+
}
|
| 1181 |
+
|
| 1182 |
+
// fully connected
|
| 1183 |
+
cur = ggml_mul_mat(ctxL,
|
| 1184 |
+
layer.mlp_0_w,
|
| 1185 |
+
cur);
|
| 1186 |
+
|
| 1187 |
+
cur = ggml_add(ctxL,
|
| 1188 |
+
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
| 1189 |
+
cur);
|
| 1190 |
+
|
| 1191 |
+
// GELU activation
|
| 1192 |
+
cur = ggml_gelu(ctxL, cur);
|
| 1193 |
+
|
| 1194 |
+
// projection
|
| 1195 |
+
cur = ggml_mul_mat(ctxL,
|
| 1196 |
+
layer.mlp_1_w,
|
| 1197 |
+
cur);
|
| 1198 |
+
|
| 1199 |
+
cur = ggml_add(ctxL,
|
| 1200 |
+
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
| 1201 |
+
cur);
|
| 1202 |
+
}
|
| 1203 |
+
|
| 1204 |
+
// output from this layer
|
| 1205 |
+
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
| 1206 |
+
|
| 1207 |
+
{
|
| 1208 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 1209 |
+
|
| 1210 |
+
ggml_build_forward_expand(&gf, inpO);
|
| 1211 |
+
ggml_graph_compute (ctxL, &gf);
|
| 1212 |
+
|
| 1213 |
+
//ggml_graph_print(&gf);
|
| 1214 |
+
}
|
| 1215 |
+
|
| 1216 |
+
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
| 1217 |
+
// input for next layer (inpO -> inpL)
|
| 1218 |
+
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
| 1219 |
+
inpL->op = GGML_OP_NONE;
|
| 1220 |
+
inpL->src0 = NULL;
|
| 1221 |
+
inpL->src1 = NULL;
|
| 1222 |
+
|
| 1223 |
+
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
| 1224 |
+
|
| 1225 |
+
ggml_free(ctxL);
|
| 1226 |
+
}
|
| 1227 |
+
|
| 1228 |
+
cur = inpL;
|
| 1229 |
+
|
| 1230 |
+
// norm
|
| 1231 |
+
{
|
| 1232 |
+
cur = ggml_norm(ctx0, cur);
|
| 1233 |
+
|
| 1234 |
+
// cur = ln_f_g*cur + ln_f_b
|
| 1235 |
+
cur = ggml_add(ctx0,
|
| 1236 |
+
ggml_mul(ctx0,
|
| 1237 |
+
ggml_repeat(ctx0, model.e_ln_w, cur),
|
| 1238 |
+
cur),
|
| 1239 |
+
ggml_repeat(ctx0, model.e_ln_b, cur));
|
| 1240 |
+
}
|
| 1241 |
+
|
| 1242 |
+
// run the computation
|
| 1243 |
+
{
|
| 1244 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 1245 |
+
|
| 1246 |
+
ggml_build_forward_expand(&gf, cur);
|
| 1247 |
+
ggml_graph_compute (ctx0, &gf);
|
| 1248 |
+
|
| 1249 |
+
//ggml_graph_print(&gf);
|
| 1250 |
+
}
|
| 1251 |
+
|
| 1252 |
+
// cur
|
| 1253 |
+
//{
|
| 1254 |
+
// printf("ne0 = %d\n", cur->ne[0]);
|
| 1255 |
+
// printf("ne1 = %d\n", cur->ne[1]);
|
| 1256 |
+
// for (int i = 0; i < 10; ++i) {
|
| 1257 |
+
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
| 1258 |
+
// }
|
| 1259 |
+
// printf("... ");
|
| 1260 |
+
// for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
|
| 1261 |
+
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
| 1262 |
+
// }
|
| 1263 |
+
// printf("\n");
|
| 1264 |
+
//}
|
| 1265 |
+
|
| 1266 |
+
// pre-compute cross-attention memory
|
| 1267 |
+
{
|
| 1268 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 1269 |
+
|
| 1270 |
+
// TODO: hack to disconnect the encoded features from the previous graph
|
| 1271 |
+
cur->op = GGML_OP_NONE;
|
| 1272 |
+
cur->src0 = NULL;
|
| 1273 |
+
cur->src1 = NULL;
|
| 1274 |
+
|
| 1275 |
+
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
|
| 1276 |
+
auto & layer = model.layers_decoder[il];
|
| 1277 |
+
|
| 1278 |
+
struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
|
| 1279 |
+
layer.cross_attn_k_w,
|
| 1280 |
+
cur);
|
| 1281 |
+
|
| 1282 |
+
Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
|
| 1283 |
+
|
| 1284 |
+
struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
|
| 1285 |
+
layer.cross_attn_v_w,
|
| 1286 |
+
cur);
|
| 1287 |
+
|
| 1288 |
+
Vcross = ggml_add(ctx0,
|
| 1289 |
+
ggml_repeat(ctx0,
|
| 1290 |
+
layer.cross_attn_v_b,
|
| 1291 |
+
Vcross),
|
| 1292 |
+
Vcross);
|
| 1293 |
+
|
| 1294 |
+
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
| 1295 |
+
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
| 1296 |
+
|
| 1297 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
| 1298 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
| 1299 |
+
}
|
| 1300 |
+
|
| 1301 |
+
ggml_graph_compute(ctx0, &gf);
|
| 1302 |
+
}
|
| 1303 |
+
|
| 1304 |
+
////////////////////////////////////////////////////////////////////////////
|
| 1305 |
+
|
| 1306 |
+
// output the features
|
| 1307 |
+
assert(cur->type == GGML_TYPE_F32);
|
| 1308 |
+
features.resize(cur->ne[0]*cur->ne[1]);
|
| 1309 |
+
memcpy(features.data(), cur->data, features.size()*sizeof(float));
|
| 1310 |
+
|
| 1311 |
+
//printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
|
| 1312 |
+
|
| 1313 |
+
ggml_free(ctx0);
|
| 1314 |
+
|
| 1315 |
+
return true;
|
| 1316 |
+
}
|
| 1317 |
+
|
| 1318 |
+
// evaluate the decoder
|
| 1319 |
+
//
|
| 1320 |
+
// given text prompt + audio features -> predicts the probabilities for the next token
|
| 1321 |
+
//
|
| 1322 |
+
// - model: the model
|
| 1323 |
+
// - n_threads: number of threads to use
|
| 1324 |
+
// - n_past: prompt length
|
| 1325 |
+
// - prompt: text prompt
|
| 1326 |
+
// - logits_out: output logits
|
| 1327 |
+
// - probs_out: output probabilities
|
| 1328 |
+
//
|
| 1329 |
+
bool whisper_decode(
|
| 1330 |
+
const whisper_model & model,
|
| 1331 |
+
const int n_threads,
|
| 1332 |
+
const int n_past,
|
| 1333 |
+
const std::vector<whisper_vocab::id> & prompt,
|
| 1334 |
+
std::vector<float> & logits_out,
|
| 1335 |
+
std::vector<float> & probs_out) {
|
| 1336 |
+
const auto & hparams = model.hparams;
|
| 1337 |
+
|
| 1338 |
+
const int n_vocab = hparams.n_vocab;
|
| 1339 |
+
|
| 1340 |
+
const int n_ctx = hparams.n_text_ctx;
|
| 1341 |
+
const int n_state = hparams.n_text_state;
|
| 1342 |
+
const int n_head = hparams.n_text_head;
|
| 1343 |
+
const int n_layer = hparams.n_text_layer;
|
| 1344 |
+
|
| 1345 |
+
const int N = prompt.size();
|
| 1346 |
+
const int M = hparams.n_audio_ctx;
|
| 1347 |
+
|
| 1348 |
+
struct ggml_init_params params;
|
| 1349 |
+
|
| 1350 |
+
{
|
| 1351 |
+
static size_t buf_size = MEM_REQ_DECODE.at(model.type);
|
| 1352 |
+
static void * buf = malloc(buf_size);
|
| 1353 |
+
|
| 1354 |
+
params = {
|
| 1355 |
+
.mem_size = buf_size,
|
| 1356 |
+
.mem_buffer = buf,
|
| 1357 |
+
};
|
| 1358 |
+
}
|
| 1359 |
+
|
| 1360 |
+
struct ggml_context * ctx0 = ggml_init(params);
|
| 1361 |
+
|
| 1362 |
+
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
| 1363 |
+
memcpy(embd->data, prompt.data(), N*ggml_element_size(embd));
|
| 1364 |
+
|
| 1365 |
+
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
| 1366 |
+
for (int i = 0; i < N; ++i) {
|
| 1367 |
+
((int32_t *) position->data)[i] = n_past + i;
|
| 1368 |
+
}
|
| 1369 |
+
|
| 1370 |
+
// wte + wpe
|
| 1371 |
+
struct ggml_tensor * cur =
|
| 1372 |
+
ggml_add(ctx0,
|
| 1373 |
+
ggml_get_rows(ctx0, model.d_te, embd),
|
| 1374 |
+
ggml_get_rows(ctx0, model.d_pe, position));
|
| 1375 |
+
|
| 1376 |
+
struct ggml_tensor * inpL = cur;
|
| 1377 |
+
|
| 1378 |
+
for (int il = 0; il < n_layer; ++il) {
|
| 1379 |
+
const auto & layer = model.layers_decoder[il];
|
| 1380 |
+
|
| 1381 |
+
struct ggml_init_params paramsL;
|
| 1382 |
+
|
| 1383 |
+
{
|
| 1384 |
+
static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type);
|
| 1385 |
+
static void * buf = malloc(buf_size);
|
| 1386 |
+
|
| 1387 |
+
paramsL = {
|
| 1388 |
+
.mem_size = buf_size,
|
| 1389 |
+
.mem_buffer = buf,
|
| 1390 |
+
};
|
| 1391 |
+
}
|
| 1392 |
+
|
| 1393 |
+
struct ggml_context * ctxL = ggml_init(paramsL);
|
| 1394 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 1395 |
+
|
| 1396 |
+
// norm
|
| 1397 |
+
{
|
| 1398 |
+
cur = ggml_norm(ctxL, inpL);
|
| 1399 |
+
|
| 1400 |
+
// cur = ln_0_w*cur + ln_0_b
|
| 1401 |
+
cur = ggml_add(ctxL,
|
| 1402 |
+
ggml_mul(ctxL,
|
| 1403 |
+
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
| 1404 |
+
cur),
|
| 1405 |
+
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
| 1406 |
+
}
|
| 1407 |
+
|
| 1408 |
+
// self-attention
|
| 1409 |
+
{
|
| 1410 |
+
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
| 1411 |
+
layer.attn_q_w,
|
| 1412 |
+
cur);
|
| 1413 |
+
|
| 1414 |
+
Qcur = ggml_add(ctxL,
|
| 1415 |
+
ggml_repeat(ctxL,
|
| 1416 |
+
layer.attn_q_b,
|
| 1417 |
+
Qcur),
|
| 1418 |
+
Qcur);
|
| 1419 |
+
|
| 1420 |
+
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
| 1421 |
+
|
| 1422 |
+
// no bias for Key
|
| 1423 |
+
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
| 1424 |
+
layer.attn_k_w,
|
| 1425 |
+
cur);
|
| 1426 |
+
|
| 1427 |
+
Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
| 1428 |
+
|
| 1429 |
+
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
| 1430 |
+
layer.attn_v_w,
|
| 1431 |
+
cur);
|
| 1432 |
+
|
| 1433 |
+
Vcur = ggml_add(ctxL,
|
| 1434 |
+
ggml_repeat(ctxL,
|
| 1435 |
+
layer.attn_v_b,
|
| 1436 |
+
Vcur),
|
| 1437 |
+
Vcur);
|
| 1438 |
+
|
| 1439 |
+
// store key and value to memory
|
| 1440 |
+
{
|
| 1441 |
+
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
| 1442 |
+
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
| 1443 |
+
|
| 1444 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
| 1445 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
| 1446 |
+
}
|
| 1447 |
+
|
| 1448 |
+
// ------
|
| 1449 |
+
|
| 1450 |
+
struct ggml_tensor * Q =
|
| 1451 |
+
ggml_permute(ctxL,
|
| 1452 |
+
ggml_cpy(ctxL,
|
| 1453 |
+
Qcur,
|
| 1454 |
+
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
| 1455 |
+
0, 2, 1, 3);
|
| 1456 |
+
|
| 1457 |
+
struct ggml_tensor * K =
|
| 1458 |
+
ggml_permute(ctxL,
|
| 1459 |
+
ggml_reshape_3d(ctxL,
|
| 1460 |
+
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
| 1461 |
+
n_state/n_head, n_head, n_past + N),
|
| 1462 |
+
0, 2, 1, 3);
|
| 1463 |
+
|
| 1464 |
+
// K * Q
|
| 1465 |
+
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
| 1466 |
+
|
| 1467 |
+
//struct ggml_tensor * KQ_scaled =
|
| 1468 |
+
// ggml_scale(ctxL,
|
| 1469 |
+
// KQ,
|
| 1470 |
+
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
| 1471 |
+
// );
|
| 1472 |
+
|
| 1473 |
+
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
|
| 1474 |
+
|
| 1475 |
+
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
|
| 1476 |
+
|
| 1477 |
+
struct ggml_tensor * V_trans =
|
| 1478 |
+
ggml_permute(ctxL,
|
| 1479 |
+
ggml_reshape_3d(ctxL,
|
| 1480 |
+
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
| 1481 |
+
n_state/n_head, n_head, n_past + N),
|
| 1482 |
+
1, 2, 0, 3);
|
| 1483 |
+
|
| 1484 |
+
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
| 1485 |
+
|
| 1486 |
+
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
| 1487 |
+
|
| 1488 |
+
cur = ggml_cpy(ctxL,
|
| 1489 |
+
KQV_merged,
|
| 1490 |
+
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
| 1491 |
+
}
|
| 1492 |
+
|
| 1493 |
+
{
|
| 1494 |
+
cur = ggml_mul_mat(ctxL,
|
| 1495 |
+
layer.attn_ln_1_w,
|
| 1496 |
+
cur);
|
| 1497 |
+
|
| 1498 |
+
cur = ggml_add(ctxL,
|
| 1499 |
+
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
| 1500 |
+
cur);
|
| 1501 |
+
}
|
| 1502 |
+
|
| 1503 |
+
// add the input
|
| 1504 |
+
struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
|
| 1505 |
+
|
| 1506 |
+
// norm
|
| 1507 |
+
{
|
| 1508 |
+
cur = ggml_norm(ctxL, inpCA); // Note we use inpCA here
|
| 1509 |
+
|
| 1510 |
+
// cur = ln_0_w*cur + ln_0_b
|
| 1511 |
+
cur = ggml_add(ctxL,
|
| 1512 |
+
ggml_mul(ctxL,
|
| 1513 |
+
ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
|
| 1514 |
+
cur),
|
| 1515 |
+
ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
|
| 1516 |
+
}
|
| 1517 |
+
|
| 1518 |
+
// cross-attention
|
| 1519 |
+
{
|
| 1520 |
+
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
| 1521 |
+
layer.cross_attn_q_w,
|
| 1522 |
+
cur);
|
| 1523 |
+
|
| 1524 |
+
Qcur = ggml_add(ctxL,
|
| 1525 |
+
ggml_repeat(ctxL,
|
| 1526 |
+
layer.cross_attn_q_b,
|
| 1527 |
+
Qcur),
|
| 1528 |
+
Qcur);
|
| 1529 |
+
|
| 1530 |
+
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
| 1531 |
+
|
| 1532 |
+
// Kcross is already scaled
|
| 1533 |
+
struct ggml_tensor * Kcross =
|
| 1534 |
+
ggml_reshape_3d(ctxL,
|
| 1535 |
+
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
| 1536 |
+
n_state/n_head, n_head, M);
|
| 1537 |
+
|
| 1538 |
+
struct ggml_tensor * Vcross =
|
| 1539 |
+
ggml_reshape_3d(ctxL,
|
| 1540 |
+
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
| 1541 |
+
n_state/n_head, n_head, M);
|
| 1542 |
+
|
| 1543 |
+
// ------
|
| 1544 |
+
|
| 1545 |
+
struct ggml_tensor * Q =
|
| 1546 |
+
ggml_permute(ctxL,
|
| 1547 |
+
ggml_cpy(ctxL,
|
| 1548 |
+
Qcur,
|
| 1549 |
+
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
| 1550 |
+
0, 2, 1, 3);
|
| 1551 |
+
|
| 1552 |
+
struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
|
| 1553 |
+
|
| 1554 |
+
// K * Q
|
| 1555 |
+
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
| 1556 |
+
|
| 1557 |
+
//struct ggml_tensor * KQ_scaled =
|
| 1558 |
+
// ggml_scale(ctxL,
|
| 1559 |
+
// KQ,
|
| 1560 |
+
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
| 1561 |
+
// );
|
| 1562 |
+
|
| 1563 |
+
// no masking for cross-attention
|
| 1564 |
+
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
|
| 1565 |
+
|
| 1566 |
+
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
|
| 1567 |
+
|
| 1568 |
+
struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
|
| 1569 |
+
|
| 1570 |
+
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
| 1571 |
+
|
| 1572 |
+
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
| 1573 |
+
|
| 1574 |
+
// cur = KQV_merged.contiguous().view(n_state, N)
|
| 1575 |
+
cur = ggml_cpy(ctxL,
|
| 1576 |
+
KQV_merged,
|
| 1577 |
+
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
| 1578 |
+
}
|
| 1579 |
+
|
| 1580 |
+
// projection
|
| 1581 |
+
{
|
| 1582 |
+
cur = ggml_mul_mat(ctxL,
|
| 1583 |
+
layer.cross_attn_ln_1_w,
|
| 1584 |
+
cur);
|
| 1585 |
+
|
| 1586 |
+
cur = ggml_add(ctxL,
|
| 1587 |
+
ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
|
| 1588 |
+
cur);
|
| 1589 |
+
}
|
| 1590 |
+
|
| 1591 |
+
|
| 1592 |
+
// add the input
|
| 1593 |
+
cur = ggml_add(ctxL, cur, inpCA);
|
| 1594 |
+
|
| 1595 |
+
struct ggml_tensor * inpFF = cur;
|
| 1596 |
+
|
| 1597 |
+
// feed-forward network
|
| 1598 |
+
{
|
| 1599 |
+
// norm
|
| 1600 |
+
{
|
| 1601 |
+
cur = ggml_norm(ctxL, inpFF);
|
| 1602 |
+
|
| 1603 |
+
// cur = ln_2_g*cur + ln_2_b
|
| 1604 |
+
// [ 768, N]
|
| 1605 |
+
cur = ggml_add(ctxL,
|
| 1606 |
+
ggml_mul(ctxL,
|
| 1607 |
+
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
| 1608 |
+
cur),
|
| 1609 |
+
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
| 1610 |
+
}
|
| 1611 |
+
|
| 1612 |
+
// fully connected
|
| 1613 |
+
cur = ggml_mul_mat(ctxL,
|
| 1614 |
+
layer.mlp_0_w,
|
| 1615 |
+
cur);
|
| 1616 |
+
|
| 1617 |
+
cur = ggml_add(ctxL,
|
| 1618 |
+
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
| 1619 |
+
cur);
|
| 1620 |
+
|
| 1621 |
+
// GELU activation
|
| 1622 |
+
cur = ggml_gelu(ctxL, cur);
|
| 1623 |
+
|
| 1624 |
+
// projection
|
| 1625 |
+
cur = ggml_mul_mat(ctxL,
|
| 1626 |
+
layer.mlp_1_w,
|
| 1627 |
+
cur);
|
| 1628 |
+
|
| 1629 |
+
cur = ggml_add(ctxL,
|
| 1630 |
+
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
| 1631 |
+
cur);
|
| 1632 |
+
}
|
| 1633 |
+
|
| 1634 |
+
// output from this layer
|
| 1635 |
+
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
| 1636 |
+
|
| 1637 |
+
{
|
| 1638 |
+
ggml_build_forward_expand(&gf, inpO);
|
| 1639 |
+
ggml_graph_compute (ctxL, &gf);
|
| 1640 |
+
|
| 1641 |
+
//ggml_graph_print(&gf);
|
| 1642 |
+
}
|
| 1643 |
+
|
| 1644 |
+
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
| 1645 |
+
// input for next layer (inpO -> inpL)
|
| 1646 |
+
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
| 1647 |
+
inpL->op = GGML_OP_NONE;
|
| 1648 |
+
inpL->src0 = NULL;
|
| 1649 |
+
inpL->src1 = NULL;
|
| 1650 |
+
|
| 1651 |
+
if (N > 1) {
|
| 1652 |
+
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
| 1653 |
+
}
|
| 1654 |
+
|
| 1655 |
+
ggml_free(ctxL);
|
| 1656 |
+
}
|
| 1657 |
+
|
| 1658 |
+
cur = inpL;
|
| 1659 |
+
|
| 1660 |
+
// norm
|
| 1661 |
+
{
|
| 1662 |
+
cur = ggml_norm(ctx0, cur);
|
| 1663 |
+
|
| 1664 |
+
cur = ggml_add(ctx0,
|
| 1665 |
+
ggml_mul(ctx0,
|
| 1666 |
+
ggml_repeat(ctx0, model.d_ln_w, cur),
|
| 1667 |
+
cur),
|
| 1668 |
+
ggml_repeat(ctx0, model.d_ln_b, cur));
|
| 1669 |
+
}
|
| 1670 |
+
|
| 1671 |
+
struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
|
| 1672 |
+
|
| 1673 |
+
// logits -> probs
|
| 1674 |
+
cur = ggml_dup(ctx0, logits);
|
| 1675 |
+
cur = ggml_soft_max(ctx0, cur); // in-place
|
| 1676 |
+
|
| 1677 |
+
// run the computation
|
| 1678 |
+
{
|
| 1679 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 1680 |
+
|
| 1681 |
+
ggml_build_forward_expand(&gf, cur);
|
| 1682 |
+
ggml_graph_compute (ctx0, &gf);
|
| 1683 |
+
}
|
| 1684 |
+
|
| 1685 |
+
logits_out.resize(N*n_vocab);
|
| 1686 |
+
memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
|
| 1687 |
+
|
| 1688 |
+
probs_out.resize(N*n_vocab);
|
| 1689 |
+
memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
|
| 1690 |
+
|
| 1691 |
+
//if (N > 1) {
|
| 1692 |
+
// const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
|
| 1693 |
+
// printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
|
| 1694 |
+
// printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
|
| 1695 |
+
//}
|
| 1696 |
+
|
| 1697 |
+
ggml_free(ctx0);
|
| 1698 |
+
|
| 1699 |
+
return true;
|
| 1700 |
+
}
|
| 1701 |
+
|
| 1702 |
+
// the most basic sampling scheme - select the top token
|
| 1703 |
+
// TODO: beam search
|
| 1704 |
+
// TODO: temperature
|
| 1705 |
+
whisper_vocab::id whisper_sample_best(
|
| 1706 |
+
const whisper_vocab & vocab,
|
| 1707 |
+
const float * probs,
|
| 1708 |
+
double temp,
|
| 1709 |
+
int offset = 0) {
|
| 1710 |
+
int n_logits = vocab.id_to_token.size();
|
| 1711 |
+
|
| 1712 |
+
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
| 1713 |
+
probs_id.reserve(n_logits);
|
| 1714 |
+
|
| 1715 |
+
for (int i = offset; i < n_logits; i++) {
|
| 1716 |
+
probs_id.push_back(std::make_pair(probs[i], i));
|
| 1717 |
+
}
|
| 1718 |
+
|
| 1719 |
+
const int top_k = 10;
|
| 1720 |
+
|
| 1721 |
+
// find the top K tokens
|
| 1722 |
+
std::partial_sort(
|
| 1723 |
+
probs_id.begin(),
|
| 1724 |
+
probs_id.begin() + top_k, probs_id.end(),
|
| 1725 |
+
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
|
| 1726 |
+
return a.first > b.first;
|
| 1727 |
+
});
|
| 1728 |
+
|
| 1729 |
+
probs_id.resize(top_k);
|
| 1730 |
+
|
| 1731 |
+
//printf("\n");
|
| 1732 |
+
//for (int i = 0; i < (int) probs_id.size(); i++) {
|
| 1733 |
+
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
|
| 1734 |
+
//}
|
| 1735 |
+
|
| 1736 |
+
int res = 0;
|
| 1737 |
+
while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) {
|
| 1738 |
+
res++;
|
| 1739 |
+
}
|
| 1740 |
+
|
| 1741 |
+
return probs_id[res].second;
|
| 1742 |
+
}
|
| 1743 |
+
|
| 1744 |
+
// Cooley-Tukey FFT
|
| 1745 |
+
// poor man's implmentation - use something better
|
| 1746 |
+
// input is real-valued
|
| 1747 |
+
// output is complex-valued
|
| 1748 |
+
void fft(const std::vector<float> & in, std::vector<float> & out) {
|
| 1749 |
+
out.resize(in.size()*2);
|
| 1750 |
+
|
| 1751 |
+
int N = in.size();
|
| 1752 |
+
|
| 1753 |
+
if (N == 1) {
|
| 1754 |
+
out[0] = in[0];
|
| 1755 |
+
out[1] = 0;
|
| 1756 |
+
return;
|
| 1757 |
+
}
|
| 1758 |
+
|
| 1759 |
+
std::vector<float> even;
|
| 1760 |
+
std::vector<float> odd;
|
| 1761 |
+
|
| 1762 |
+
for (int i = 0; i < N; i++) {
|
| 1763 |
+
if (i % 2 == 0) {
|
| 1764 |
+
even.push_back(in[i]);
|
| 1765 |
+
} else {
|
| 1766 |
+
odd.push_back(in[i]);
|
| 1767 |
+
}
|
| 1768 |
+
}
|
| 1769 |
+
|
| 1770 |
+
std::vector<float> even_fft;
|
| 1771 |
+
std::vector<float> odd_fft;
|
| 1772 |
+
|
| 1773 |
+
fft(even, even_fft);
|
| 1774 |
+
fft(odd, odd_fft);
|
| 1775 |
+
|
| 1776 |
+
for (int k = 0; k < N/2; k++) {
|
| 1777 |
+
float theta = 2*M_PI*k/N;
|
| 1778 |
+
|
| 1779 |
+
float re = cos(theta);
|
| 1780 |
+
float im = -sin(theta);
|
| 1781 |
+
|
| 1782 |
+
float re_odd = odd_fft[2*k + 0];
|
| 1783 |
+
float im_odd = odd_fft[2*k + 1];
|
| 1784 |
+
|
| 1785 |
+
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
| 1786 |
+
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
| 1787 |
+
|
| 1788 |
+
out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
| 1789 |
+
out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
| 1790 |
+
}
|
| 1791 |
+
}
|
| 1792 |
+
|
| 1793 |
+
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
|
| 1794 |
+
bool log_mel_spectrogram(
|
| 1795 |
+
const std::vector<float> sf32,
|
| 1796 |
+
const int sample_rate,
|
| 1797 |
+
const int fft_size,
|
| 1798 |
+
const int fft_step,
|
| 1799 |
+
const int n_mel,
|
| 1800 |
+
const int n_threads,
|
| 1801 |
+
const whisper_filters & filters,
|
| 1802 |
+
whisper_mel & mel) {
|
| 1803 |
+
const int n_sample = sf32.size();
|
| 1804 |
+
const float * samples = sf32.data();
|
| 1805 |
+
|
| 1806 |
+
// Hanning window
|
| 1807 |
+
std::vector<float> hann;
|
| 1808 |
+
hann.resize(fft_size);
|
| 1809 |
+
for (int i = 0; i < fft_size; i++) {
|
| 1810 |
+
hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
|
| 1811 |
+
}
|
| 1812 |
+
|
| 1813 |
+
mel.n_mel = n_mel;
|
| 1814 |
+
mel.n_len = (n_sample)/fft_step;
|
| 1815 |
+
mel.data.resize(mel.n_mel*mel.n_len);
|
| 1816 |
+
|
| 1817 |
+
const int n_fft = 1 + fft_size/2;
|
| 1818 |
+
|
| 1819 |
+
printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len);
|
| 1820 |
+
printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate);
|
| 1821 |
+
|
| 1822 |
+
std::vector<std::thread> workers(n_threads);
|
| 1823 |
+
for (int iw = 0; iw < n_threads; ++iw) {
|
| 1824 |
+
workers[iw] = std::thread([&](int ith) {
|
| 1825 |
+
std::vector<float> fft_in;
|
| 1826 |
+
fft_in.resize(fft_size);
|
| 1827 |
+
for (int i = 0; i < fft_size; i++) {
|
| 1828 |
+
fft_in[i] = 0.0;
|
| 1829 |
+
}
|
| 1830 |
+
|
| 1831 |
+
std::vector<float> fft_out;
|
| 1832 |
+
fft_out.resize(2*fft_size);
|
| 1833 |
+
|
| 1834 |
+
for (int i = ith; i < mel.n_len; i += n_threads) {
|
| 1835 |
+
const int offset = i*fft_step;
|
| 1836 |
+
|
| 1837 |
+
// apply Hanning window
|
| 1838 |
+
for (int j = 0; j < fft_size; j++) {
|
| 1839 |
+
if (offset + j < n_sample) {
|
| 1840 |
+
fft_in[j] = hann[j]*samples[offset + j];
|
| 1841 |
+
} else {
|
| 1842 |
+
fft_in[j] = 0.0;
|
| 1843 |
+
}
|
| 1844 |
+
}
|
| 1845 |
+
|
| 1846 |
+
// FFT -> mag^2
|
| 1847 |
+
fft(fft_in, fft_out);
|
| 1848 |
+
|
| 1849 |
+
for (int j = 0; j < n_fft; j++) {
|
| 1850 |
+
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
|
| 1851 |
+
}
|
| 1852 |
+
|
| 1853 |
+
// mel spectrogram
|
| 1854 |
+
for (int j = 0; j < mel.n_mel; j++) {
|
| 1855 |
+
double sum = 0.0;
|
| 1856 |
+
|
| 1857 |
+
for (int k = 0; k < n_fft; k++) {
|
| 1858 |
+
sum += fft_out[k]*filters.data[j*n_fft + k];
|
| 1859 |
+
}
|
| 1860 |
+
if (sum < 1e-10) {
|
| 1861 |
+
sum = 1e-10;
|
| 1862 |
+
}
|
| 1863 |
+
|
| 1864 |
+
sum = log10(sum);
|
| 1865 |
+
|
| 1866 |
+
mel.data[j*mel.n_len + i] = sum;
|
| 1867 |
+
}
|
| 1868 |
+
}
|
| 1869 |
+
}, iw);
|
| 1870 |
+
}
|
| 1871 |
+
|
| 1872 |
+
for (int iw = 0; iw < n_threads; ++iw) {
|
| 1873 |
+
workers[iw].join();
|
| 1874 |
+
}
|
| 1875 |
+
|
| 1876 |
+
// clamping and normalization
|
| 1877 |
+
double mmax = -1e20;
|
| 1878 |
+
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
| 1879 |
+
if (mel.data[i] > mmax) {
|
| 1880 |
+
mmax = mel.data[i];
|
| 1881 |
+
}
|
| 1882 |
+
}
|
| 1883 |
+
|
| 1884 |
+
mmax -= 8.0;
|
| 1885 |
+
|
| 1886 |
+
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
| 1887 |
+
if (mel.data[i] < mmax) {
|
| 1888 |
+
mel.data[i] = mmax;
|
| 1889 |
+
}
|
| 1890 |
+
|
| 1891 |
+
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
| 1892 |
+
}
|
| 1893 |
+
|
| 1894 |
+
return true;
|
| 1895 |
+
}
|
| 1896 |
+
|
| 1897 |
+
int main(int argc, char ** argv) {
|
| 1898 |
+
const int64_t t_main_start_us = ggml_time_us();
|
| 1899 |
+
|
| 1900 |
+
whisper_params params;
|
| 1901 |
+
params.model = "models/whisper-tiny.en/ggml-model.bin";
|
| 1902 |
+
|
| 1903 |
+
if (whisper_params_parse(argc, argv, params) == false) {
|
| 1904 |
+
return 1;
|
| 1905 |
+
}
|
| 1906 |
+
|
| 1907 |
+
if (params.seed < 0) {
|
| 1908 |
+
params.seed = time(NULL);
|
| 1909 |
+
}
|
| 1910 |
+
|
| 1911 |
+
// Model loading
|
| 1912 |
+
|
| 1913 |
+
//printf("%s: seed = %d\n", __func__, params.seed);
|
| 1914 |
+
|
| 1915 |
+
int64_t t_load_us = 0;
|
| 1916 |
+
int64_t t_mel_us = 0;
|
| 1917 |
+
int64_t t_sample_us = 0;
|
| 1918 |
+
int64_t t_encode_us = 0;
|
| 1919 |
+
int64_t t_decode_us = 0;
|
| 1920 |
+
|
| 1921 |
+
whisper_vocab vocab;
|
| 1922 |
+
whisper_model model;
|
| 1923 |
+
|
| 1924 |
+
// load the model
|
| 1925 |
+
{
|
| 1926 |
+
const int64_t t_start_us = ggml_time_us();
|
| 1927 |
+
|
| 1928 |
+
if (!whisper_model_load(params.model, model, vocab)) {
|
| 1929 |
+
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
| 1930 |
+
return 1;
|
| 1931 |
+
}
|
| 1932 |
+
|
| 1933 |
+
t_load_us = ggml_time_us() - t_start_us;
|
| 1934 |
+
}
|
| 1935 |
+
|
| 1936 |
+
// WAV input
|
| 1937 |
+
std::vector<float> pcmf32;
|
| 1938 |
+
{
|
| 1939 |
+
drwav wav;
|
| 1940 |
+
if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
|
| 1941 |
+
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
|
| 1942 |
+
return 2;
|
| 1943 |
+
}
|
| 1944 |
+
|
| 1945 |
+
if (wav.channels != 1) {
|
| 1946 |
+
fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
|
| 1947 |
+
return 3;
|
| 1948 |
+
}
|
| 1949 |
+
|
| 1950 |
+
if (wav.sampleRate != SAMPLE_RATE) {
|
| 1951 |
+
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
|
| 1952 |
+
return 4;
|
| 1953 |
+
}
|
| 1954 |
+
|
| 1955 |
+
if (wav.bitsPerSample != 16) {
|
| 1956 |
+
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
|
| 1957 |
+
return 5;
|
| 1958 |
+
}
|
| 1959 |
+
|
| 1960 |
+
std::vector<int16_t> pcm16;
|
| 1961 |
+
pcm16.resize(wav.totalPCMFrameCount);
|
| 1962 |
+
drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data());
|
| 1963 |
+
drwav_uninit(&wav);
|
| 1964 |
+
|
| 1965 |
+
// convert to float
|
| 1966 |
+
pcmf32.resize(pcm16.size());
|
| 1967 |
+
for (size_t i = 0; i < pcm16.size(); i++) {
|
| 1968 |
+
pcmf32[i] = float(pcm16[i])/32768.0f;
|
| 1969 |
+
}
|
| 1970 |
+
}
|
| 1971 |
+
|
| 1972 |
+
// compute log mel spectrogram
|
| 1973 |
+
whisper_mel mel_inp;
|
| 1974 |
+
{
|
| 1975 |
+
const int64_t t_start_us = ggml_time_us();
|
| 1976 |
+
|
| 1977 |
+
log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp);
|
| 1978 |
+
|
| 1979 |
+
t_mel_us = ggml_time_us() - t_start_us;
|
| 1980 |
+
}
|
| 1981 |
+
|
| 1982 |
+
std::vector<whisper_vocab::id> prompt_past = { };
|
| 1983 |
+
|
| 1984 |
+
// main loop
|
| 1985 |
+
int seek = 0;
|
| 1986 |
+
while (true) {
|
| 1987 |
+
if (seek >= mel_inp.n_len) {
|
| 1988 |
+
break;
|
| 1989 |
+
}
|
| 1990 |
+
|
| 1991 |
+
// encode audio features starting at offset seek
|
| 1992 |
+
std::vector<float> features;
|
| 1993 |
+
{
|
| 1994 |
+
const int64_t t_start_us = ggml_time_us();
|
| 1995 |
+
|
| 1996 |
+
if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) {
|
| 1997 |
+
fprintf(stderr, "%s: failed to eval\n", __func__);
|
| 1998 |
+
return 1;
|
| 1999 |
+
}
|
| 2000 |
+
|
| 2001 |
+
t_encode_us = ggml_time_us() - t_start_us;
|
| 2002 |
+
}
|
| 2003 |
+
|
| 2004 |
+
std::vector<float> probs;
|
| 2005 |
+
std::vector<float> logits;
|
| 2006 |
+
|
| 2007 |
+
// SOT
|
| 2008 |
+
// ref: https://github.com/openai/whisper/blob/15ab54826343c27cfaf44ce31e9c8fb63d0aa775/whisper/decoding.py#L506-L526
|
| 2009 |
+
// TODO: use different initial tokens for different tasks
|
| 2010 |
+
std::vector<whisper_vocab::id> prompt = { vocab.token_sot };
|
| 2011 |
+
|
| 2012 |
+
int n_past = 0;
|
| 2013 |
+
|
| 2014 |
+
if (prompt_past.size() > 0) {
|
| 2015 |
+
int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
|
| 2016 |
+
|
| 2017 |
+
prompt = { vocab.token_prev };
|
| 2018 |
+
prompt.insert(prompt.end(), prompt_past.end() - n_take, prompt_past.end());
|
| 2019 |
+
prompt.push_back(vocab.token_sot);
|
| 2020 |
+
|
| 2021 |
+
prompt_past.clear();
|
| 2022 |
+
prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - 1);
|
| 2023 |
+
}
|
| 2024 |
+
|
| 2025 |
+
bool done = false;
|
| 2026 |
+
int seek_delta = 100*CHUNK_SIZE;
|
| 2027 |
+
whisper_vocab::id last_id = 0;
|
| 2028 |
+
|
| 2029 |
+
//for (int i = 0; i < prompt.size(); i++) {
|
| 2030 |
+
// printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
|
| 2031 |
+
//}
|
| 2032 |
+
|
| 2033 |
+
printf("\n");
|
| 2034 |
+
for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) {
|
| 2035 |
+
// decode
|
| 2036 |
+
if (prompt.size() > 0) {
|
| 2037 |
+
const int64_t t_start_us = ggml_time_us();
|
| 2038 |
+
|
| 2039 |
+
if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) {
|
| 2040 |
+
fprintf(stderr, "%s: failed to eval\n", __func__);
|
| 2041 |
+
return 1;
|
| 2042 |
+
}
|
| 2043 |
+
|
| 2044 |
+
t_decode_us += ggml_time_us() - t_start_us;
|
| 2045 |
+
}
|
| 2046 |
+
|
| 2047 |
+
n_past += prompt.size();
|
| 2048 |
+
prompt.clear();
|
| 2049 |
+
|
| 2050 |
+
{
|
| 2051 |
+
// sample next token
|
| 2052 |
+
const float temp = 1.0; // TODO
|
| 2053 |
+
|
| 2054 |
+
const int n_vocab = model.hparams.n_vocab;
|
| 2055 |
+
|
| 2056 |
+
whisper_vocab::id id = 0;
|
| 2057 |
+
|
| 2058 |
+
{
|
| 2059 |
+
const int64_t t_start_sample_us = ggml_time_us();
|
| 2060 |
+
|
| 2061 |
+
id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0);
|
| 2062 |
+
|
| 2063 |
+
t_sample_us += ggml_time_us() - t_start_sample_us;
|
| 2064 |
+
}
|
| 2065 |
+
|
| 2066 |
+
// end of text token
|
| 2067 |
+
if (id == vocab.token_eot) {
|
| 2068 |
+
break;
|
| 2069 |
+
}
|
| 2070 |
+
|
| 2071 |
+
// 2 consecutive time tokens
|
| 2072 |
+
if (id > vocab.token_beg && last_id > vocab.token_beg) {
|
| 2073 |
+
seek_delta = 2*(id - vocab.token_beg);
|
| 2074 |
+
done = true;
|
| 2075 |
+
}
|
| 2076 |
+
last_id = id;
|
| 2077 |
+
|
| 2078 |
+
// add it to the context
|
| 2079 |
+
prompt.push_back(id);
|
| 2080 |
+
prompt_past.push_back(id);
|
| 2081 |
+
}
|
| 2082 |
+
|
| 2083 |
+
// display text
|
| 2084 |
+
for (auto id : prompt) {
|
| 2085 |
+
if (params.print_special_tokens == false && id >= vocab.token_eot) {
|
| 2086 |
+
continue;
|
| 2087 |
+
}
|
| 2088 |
+
printf("%s", vocab.id_to_token[id].c_str());
|
| 2089 |
+
}
|
| 2090 |
+
fflush(stdout);
|
| 2091 |
+
|
| 2092 |
+
if (done) {
|
| 2093 |
+
break;
|
| 2094 |
+
}
|
| 2095 |
+
}
|
| 2096 |
+
|
| 2097 |
+
seek += seek_delta;
|
| 2098 |
+
}
|
| 2099 |
+
|
| 2100 |
+
// report timing
|
| 2101 |
+
{
|
| 2102 |
+
const int64_t t_main_end_us = ggml_time_us();
|
| 2103 |
+
|
| 2104 |
+
printf("\n\n");
|
| 2105 |
+
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
| 2106 |
+
printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f);
|
| 2107 |
+
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
| 2108 |
+
printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer);
|
| 2109 |
+
printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f);
|
| 2110 |
+
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
| 2111 |
+
}
|
| 2112 |
+
|
| 2113 |
+
ggml_free(model.ctx);
|
| 2114 |
+
|
| 2115 |
+
return 0;
|
| 2116 |
+
}
|
models/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.bin
|
samples/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*
|
samples/jfk.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59dfb9a4acb36fe2a2affc14bacbee2920ff435cb13cc314a08c13f66ba7860e
|
| 3 |
+
size 352078
|