JohannesGaessler commited on
Commit
21c5b64
·
1 Parent(s): 9ac3c7e

GGUF: C++ refactor, backend support, misc fixes (llama/11030)

Browse files

* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types

ggml/CMakeLists.txt CHANGED
@@ -243,7 +243,8 @@ set(GGML_PUBLIC_HEADERS
243
  include/ggml-metal.h
244
  include/ggml-rpc.h
245
  include/ggml-sycl.h
246
- include/ggml-vulkan.h)
 
247
 
248
  set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
249
  #if (GGML_METAL)
 
243
  include/ggml-metal.h
244
  include/ggml-rpc.h
245
  include/ggml-sycl.h
246
+ include/ggml-vulkan.h
247
+ include/gguf.h)
248
 
249
  set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
250
  #if (GGML_METAL)
ggml/include/ggml-cpp.h CHANGED
@@ -7,6 +7,7 @@
7
  #include "ggml.h"
8
  #include "ggml-alloc.h"
9
  #include "ggml-backend.h"
 
10
  #include <memory>
11
 
12
  // Smart pointers for ggml types
 
7
  #include "ggml.h"
8
  #include "ggml-alloc.h"
9
  #include "ggml-backend.h"
10
+ #include "gguf.h"
11
  #include <memory>
12
 
13
  // Smart pointers for ggml types
ggml/include/ggml.h CHANGED
@@ -241,12 +241,6 @@
241
  #define GGML_ROPE_TYPE_MROPE 8
242
  #define GGML_ROPE_TYPE_VISION 24
243
 
244
- #define GGUF_MAGIC "GGUF"
245
-
246
- #define GGUF_VERSION 3
247
-
248
- #define GGUF_DEFAULT_ALIGNMENT 32
249
-
250
  #define GGML_UNUSED(x) (void)(x)
251
 
252
  #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
@@ -403,12 +397,6 @@ extern "C" {
403
  GGML_PREC_F32,
404
  };
405
 
406
- enum ggml_backend_type {
407
- GGML_BACKEND_TYPE_CPU = 0,
408
- GGML_BACKEND_TYPE_GPU = 10,
409
- GGML_BACKEND_TYPE_GPU_SPLIT = 20,
410
- };
411
-
412
  // model file types
413
  enum ggml_ftype {
414
  GGML_FTYPE_UNKNOWN = -1,
@@ -587,8 +575,6 @@ extern "C" {
587
  struct ggml_tensor {
588
  enum ggml_type type;
589
 
590
- GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
591
-
592
  struct ggml_backend_buffer * buffer;
593
 
594
  int64_t ne[GGML_MAX_DIMS]; // number of elements
@@ -2111,132 +2097,6 @@ extern "C" {
2111
  int64_t n_per_row,
2112
  const float * imatrix);
2113
 
2114
- //
2115
- // gguf
2116
- //
2117
-
2118
- enum gguf_type {
2119
- GGUF_TYPE_UINT8 = 0,
2120
- GGUF_TYPE_INT8 = 1,
2121
- GGUF_TYPE_UINT16 = 2,
2122
- GGUF_TYPE_INT16 = 3,
2123
- GGUF_TYPE_UINT32 = 4,
2124
- GGUF_TYPE_INT32 = 5,
2125
- GGUF_TYPE_FLOAT32 = 6,
2126
- GGUF_TYPE_BOOL = 7,
2127
- GGUF_TYPE_STRING = 8,
2128
- GGUF_TYPE_ARRAY = 9,
2129
- GGUF_TYPE_UINT64 = 10,
2130
- GGUF_TYPE_INT64 = 11,
2131
- GGUF_TYPE_FLOAT64 = 12,
2132
- GGUF_TYPE_COUNT, // marks the end of the enum
2133
- };
2134
-
2135
- struct gguf_context;
2136
-
2137
- struct gguf_init_params {
2138
- bool no_alloc;
2139
-
2140
- // if not NULL, create a ggml_context and allocate the tensor data in it
2141
- struct ggml_context ** ctx;
2142
- };
2143
-
2144
- GGML_API struct gguf_context * gguf_init_empty(void);
2145
- GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
2146
- //GGML_API struct gguf_context * gguf_init_from_buffer(..);
2147
-
2148
- GGML_API void gguf_free(struct gguf_context * ctx);
2149
-
2150
- GGML_API const char * gguf_type_name(enum gguf_type type);
2151
-
2152
- GGML_API int gguf_get_version (const struct gguf_context * ctx);
2153
- GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
2154
- GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
2155
- GGML_API void * gguf_get_data (const struct gguf_context * ctx);
2156
-
2157
- GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
2158
- GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
2159
- GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
2160
-
2161
- GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
2162
- GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
2163
-
2164
- // will abort if the wrong type is used for the key
2165
- GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
2166
- GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
2167
- GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
2168
- GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
2169
- GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
2170
- GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
2171
- GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
2172
- GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
2173
- GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
2174
- GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
2175
- GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
2176
- GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
2177
- GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
2178
- GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
2179
- GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
2180
- GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
2181
-
2182
- GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
2183
- GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
2184
- GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
2185
- GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
2186
- GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
2187
-
2188
- // removes key if it exists
2189
- GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
2190
-
2191
- // overrides existing values or adds a new one
2192
- GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
2193
- GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
2194
- GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
2195
- GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
2196
- GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
2197
- GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
2198
- GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
2199
- GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
2200
- GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
2201
- GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
2202
- GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
2203
- GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
2204
- GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
2205
- GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
2206
-
2207
- // set or add KV pairs from another context
2208
- GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
2209
-
2210
- // manage tensor info
2211
- GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
2212
- GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
2213
- GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
2214
-
2215
- // writing gguf files can be done in 2 ways:
2216
- //
2217
- // - write the entire gguf_context to a binary file in a single pass:
2218
- //
2219
- // gguf_write_to_file(ctx, fname);
2220
- //
2221
- // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
2222
- //
2223
- // FILE * f = fopen(fname, "wb");
2224
- // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
2225
- // fwrite(f, ...);
2226
- // void * data = gguf_meta_get_meta_data(ctx);
2227
- // fseek(f, 0, SEEK_SET);
2228
- // fwrite(f, data, gguf_get_meta_size(ctx));
2229
- // free(data);
2230
- // fclose(f);
2231
- //
2232
-
2233
- // write the entire context to a binary file
2234
- GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
2235
-
2236
- // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
2237
- GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
2238
- GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
2239
-
2240
  #ifdef __cplusplus
2241
  // restrict not standard in C++
2242
  # if defined(__GNUC__)
 
241
  #define GGML_ROPE_TYPE_MROPE 8
242
  #define GGML_ROPE_TYPE_VISION 24
243
 
 
 
 
 
 
 
244
  #define GGML_UNUSED(x) (void)(x)
245
 
246
  #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
 
397
  GGML_PREC_F32,
398
  };
399
 
 
 
 
 
 
 
400
  // model file types
401
  enum ggml_ftype {
402
  GGML_FTYPE_UNKNOWN = -1,
 
575
  struct ggml_tensor {
576
  enum ggml_type type;
577
 
 
 
578
  struct ggml_backend_buffer * buffer;
579
 
580
  int64_t ne[GGML_MAX_DIMS]; // number of elements
 
2097
  int64_t n_per_row,
2098
  const float * imatrix);
2099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100
  #ifdef __cplusplus
2101
  // restrict not standard in C++
2102
  # if defined(__GNUC__)
ggml/src/CMakeLists.txt CHANGED
@@ -208,6 +208,7 @@ add_library(ggml-base
208
  ../include/ggml-backend.h
209
  ../include/ggml-cpp.h
210
  ../include/ggml-opt.h
 
211
  ggml.c
212
  ggml-alloc.c
213
  ggml-backend.cpp
@@ -215,7 +216,8 @@ add_library(ggml-base
215
  ggml-threading.cpp
216
  ggml-threading.h
217
  ggml-quants.c
218
- ggml-quants.h)
 
219
 
220
  target_include_directories(ggml-base PRIVATE .)
221
 
 
208
  ../include/ggml-backend.h
209
  ../include/ggml-cpp.h
210
  ../include/ggml-opt.h
211
+ ../include/gguf.h
212
  ggml.c
213
  ggml-alloc.c
214
  ggml-backend.cpp
 
216
  ggml-threading.cpp
217
  ggml-threading.h
218
  ggml-quants.c
219
+ ggml-quants.h
220
+ gguf.cpp)
221
 
222
  target_include_directories(ggml-base PRIVATE .)
223
 
ggml/src/ggml-impl.h CHANGED
@@ -3,6 +3,8 @@
3
  // GGML internal header
4
 
5
  #include "ggml.h"
 
 
6
  #include <assert.h>
7
  #include <math.h>
8
  #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
@@ -551,22 +553,15 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
551
  #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
552
  #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
553
 
554
- // expose GGUF internals for test code
555
-
556
- GGML_API size_t gguf_type_size(enum gguf_type type);
557
-
558
- GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
559
-
560
- struct gguf_buf {
561
- void * data;
562
- size_t size;
563
- size_t offset;
564
- };
565
- GGML_API struct gguf_buf gguf_buf_init(size_t size);
566
- GGML_API void gguf_buf_free(struct gguf_buf buf);
567
-
568
- GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta);
569
-
570
  #ifdef __cplusplus
571
  }
572
  #endif
 
 
 
 
 
 
 
 
 
 
3
  // GGML internal header
4
 
5
  #include "ggml.h"
6
+ #include "gguf.h"
7
+
8
  #include <assert.h>
9
  #include <math.h>
10
  #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
 
553
  #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
554
  #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556
  #ifdef __cplusplus
557
  }
558
  #endif
559
+
560
+ #ifdef __cplusplus
561
+ #include <vector>
562
+
563
+ // expose GGUF internals for test code
564
+ GGML_API size_t gguf_type_size(enum gguf_type type);
565
+ GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
566
+ GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
567
+ #endif // __cplusplus
ggml/src/ggml.c CHANGED
@@ -1588,15 +1588,8 @@ static struct ggml_tensor * ggml_new_tensor_impl(
1588
 
1589
  struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
1590
 
1591
- #ifdef __clang__
1592
- // temporary until ggml_tensor::backend is removed
1593
- #pragma clang diagnostic push
1594
- #pragma clang diagnostic ignored "-Wdeprecated-declarations"
1595
- #endif
1596
-
1597
  *result = (struct ggml_tensor) {
1598
  /*.type =*/ type,
1599
- /*.backend =*/ GGML_BACKEND_TYPE_CPU,
1600
  /*.buffer =*/ NULL,
1601
  /*.ne =*/ { 1, 1, 1, 1 },
1602
  /*.nb =*/ { 0, 0, 0, 0 },
@@ -1612,10 +1605,6 @@ static struct ggml_tensor * ggml_new_tensor_impl(
1612
  /*.padding =*/ { 0 },
1613
  };
1614
 
1615
- #ifdef __clang__
1616
- #pragma clang diagnostic pop
1617
- #endif
1618
-
1619
  // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
1620
  //GGML_ASSERT_ALIGNED(result->data);
1621
 
@@ -6417,1271 +6406,6 @@ size_t ggml_quantize_chunk(
6417
 
6418
  ////////////////////////////////////////////////////////////////////////////////
6419
 
6420
- struct gguf_str {
6421
- uint64_t n; // GGUFv2
6422
- char * data;
6423
- };
6424
-
6425
- static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
6426
- [GGUF_TYPE_UINT8] = sizeof(uint8_t),
6427
- [GGUF_TYPE_INT8] = sizeof(int8_t),
6428
- [GGUF_TYPE_UINT16] = sizeof(uint16_t),
6429
- [GGUF_TYPE_INT16] = sizeof(int16_t),
6430
- [GGUF_TYPE_UINT32] = sizeof(uint32_t),
6431
- [GGUF_TYPE_INT32] = sizeof(int32_t),
6432
- [GGUF_TYPE_FLOAT32] = sizeof(float),
6433
- [GGUF_TYPE_BOOL] = sizeof(bool),
6434
- [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
6435
- [GGUF_TYPE_UINT64] = sizeof(uint64_t),
6436
- [GGUF_TYPE_INT64] = sizeof(int64_t),
6437
- [GGUF_TYPE_FLOAT64] = sizeof(double),
6438
- [GGUF_TYPE_ARRAY] = 0, // undefined
6439
- };
6440
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
6441
-
6442
- static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
6443
- [GGUF_TYPE_UINT8] = "u8",
6444
- [GGUF_TYPE_INT8] = "i8",
6445
- [GGUF_TYPE_UINT16] = "u16",
6446
- [GGUF_TYPE_INT16] = "i16",
6447
- [GGUF_TYPE_UINT32] = "u32",
6448
- [GGUF_TYPE_INT32] = "i32",
6449
- [GGUF_TYPE_FLOAT32] = "f32",
6450
- [GGUF_TYPE_BOOL] = "bool",
6451
- [GGUF_TYPE_STRING] = "str",
6452
- [GGUF_TYPE_ARRAY] = "arr",
6453
- [GGUF_TYPE_UINT64] = "u64",
6454
- [GGUF_TYPE_INT64] = "i64",
6455
- [GGUF_TYPE_FLOAT64] = "f64",
6456
- };
6457
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
6458
-
6459
- union gguf_value {
6460
- uint8_t uint8;
6461
- int8_t int8;
6462
- uint16_t uint16;
6463
- int16_t int16;
6464
- uint32_t uint32;
6465
- int32_t int32;
6466
- float float32;
6467
- uint64_t uint64;
6468
- int64_t int64;
6469
- double float64;
6470
- bool bool_;
6471
-
6472
- struct gguf_str str;
6473
-
6474
- struct {
6475
- enum gguf_type type;
6476
-
6477
- uint64_t n; // GGUFv2
6478
- void * data;
6479
- } arr;
6480
- };
6481
-
6482
- struct gguf_kv {
6483
- struct gguf_str key;
6484
-
6485
- enum gguf_type type;
6486
- union gguf_value value;
6487
- };
6488
-
6489
- struct gguf_header {
6490
- char magic[4];
6491
-
6492
- uint32_t version;
6493
- uint64_t n_tensors; // GGUFv2
6494
- uint64_t n_kv; // GGUFv2
6495
- };
6496
-
6497
- struct gguf_tensor_info {
6498
- struct gguf_str name;
6499
-
6500
- uint32_t n_dims;
6501
- uint64_t ne[GGML_MAX_DIMS];
6502
-
6503
- enum ggml_type type;
6504
-
6505
- uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
6506
-
6507
- // for writing API
6508
- const void * data;
6509
- size_t size;
6510
- };
6511
-
6512
- struct gguf_context {
6513
- struct gguf_header header;
6514
-
6515
- struct gguf_kv * kv;
6516
- struct gguf_tensor_info * infos;
6517
-
6518
- size_t alignment;
6519
- size_t offset; // offset of `data` from beginning of file
6520
- size_t size; // size of `data` in bytes
6521
-
6522
- //uint8_t * padding;
6523
- void * data;
6524
- };
6525
-
6526
- size_t gguf_type_size(enum gguf_type type) {
6527
- GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
6528
- return GGUF_TYPE_SIZE[type];
6529
- }
6530
-
6531
- static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
6532
- if (info->n_dims > GGML_MAX_DIMS) {
6533
- fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
6534
- return false;
6535
- }
6536
-
6537
- if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
6538
- fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
6539
- return false;
6540
- }
6541
-
6542
- if (strlen(info->name.data) >= GGML_MAX_NAME) {
6543
- fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
6544
- return false;
6545
- }
6546
-
6547
- for (uint32_t i = 0; i < info->n_dims; ++i) {
6548
- if (info->ne[i] <= 0) {
6549
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
6550
- return false;
6551
- }
6552
- }
6553
-
6554
- // prevent overflow for total number of elements
6555
- if (INT64_MAX/info->ne[1] <= info->ne[0]) {
6556
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
6557
- return false;
6558
- }
6559
-
6560
- if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
6561
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
6562
- return false;
6563
- }
6564
-
6565
- if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
6566
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
6567
- return false;
6568
- }
6569
-
6570
- return true;
6571
- }
6572
-
6573
- static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
6574
- const size_t n = fread(dst, 1, size, file);
6575
- *offset += n;
6576
- return n == size;
6577
- }
6578
-
6579
- static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
6580
- p->n = 0;
6581
- p->data = NULL;
6582
-
6583
- bool ok = true;
6584
-
6585
- ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
6586
-
6587
- // early exit if string length is invalid, prevents from integer overflow
6588
- if (p->n == SIZE_MAX) {
6589
- fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
6590
- return false;
6591
- }
6592
-
6593
- p->data = calloc(p->n + 1, 1);
6594
- if (!p->data) {
6595
- fprintf(stderr, "%s: failed to allocate memory for string of length %" PRIu64 "\n", __func__, p->n);
6596
- return false;
6597
- }
6598
-
6599
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
6600
-
6601
- return ok;
6602
- }
6603
-
6604
- static void gguf_free_kv(struct gguf_kv * kv) {
6605
- if (kv->key.data) {
6606
- GGML_FREE(kv->key.data);
6607
- }
6608
-
6609
- if (kv->type == GGUF_TYPE_STRING) {
6610
- if (kv->value.str.data) {
6611
- GGML_FREE(kv->value.str.data);
6612
- }
6613
- }
6614
-
6615
- if (kv->type == GGUF_TYPE_ARRAY) {
6616
- if (kv->value.arr.data) {
6617
- if (kv->value.arr.type == GGUF_TYPE_STRING) {
6618
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
6619
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
6620
- if (str->data) {
6621
- GGML_FREE(str->data);
6622
- }
6623
- }
6624
- }
6625
- GGML_FREE(kv->value.arr.data);
6626
- }
6627
- }
6628
- }
6629
-
6630
- struct gguf_context * gguf_init_empty(void) {
6631
- struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
6632
- if (!ctx) {
6633
- fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
6634
- return NULL;
6635
- }
6636
-
6637
- memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
6638
- ctx->header.version = GGUF_VERSION;
6639
- ctx->header.n_tensors = 0;
6640
- ctx->header.n_kv = 0;
6641
-
6642
- ctx->kv = NULL;
6643
- ctx->infos = NULL;
6644
-
6645
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
6646
- ctx->offset = 0;
6647
- ctx->size = 0;
6648
-
6649
- ctx->data = NULL;
6650
-
6651
- return ctx;
6652
- }
6653
-
6654
- struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
6655
- // offset from start of file
6656
- size_t offset = 0;
6657
-
6658
- char magic[4];
6659
-
6660
- // check the magic before making allocations
6661
- {
6662
- gguf_fread_el(file, &magic, sizeof(magic), &offset);
6663
-
6664
- for (uint32_t i = 0; i < sizeof(magic); i++) {
6665
- if (magic[i] != GGUF_MAGIC[i]) {
6666
- fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
6667
- return NULL;
6668
- }
6669
- }
6670
- }
6671
-
6672
- bool ok = true;
6673
-
6674
- struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
6675
- if (!ctx) {
6676
- fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
6677
- return NULL;
6678
- }
6679
-
6680
- // read the header
6681
- {
6682
- strncpy(ctx->header.magic, magic, 4);
6683
-
6684
- ctx->kv = NULL;
6685
- ctx->infos = NULL;
6686
- ctx->data = NULL;
6687
-
6688
- ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
6689
- ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
6690
- ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
6691
-
6692
- if (ctx->header.version == 1) {
6693
- fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
6694
- gguf_free(ctx);
6695
- return NULL;
6696
- }
6697
-
6698
- // sanity-checks to prevent from integer/buffer overflows
6699
-
6700
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
6701
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
6702
- ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
6703
-
6704
- if (!ok) {
6705
- fprintf(stderr, "%s: failed to read header\n", __func__);
6706
- gguf_free(ctx);
6707
- return NULL;
6708
- }
6709
- }
6710
-
6711
- // read the kv pairs
6712
- {
6713
- const uint64_t n_kv = ctx->header.n_kv;
6714
-
6715
- if (n_kv > 0) {
6716
- ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
6717
- if (!ctx->kv) {
6718
- fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
6719
- gguf_free(ctx);
6720
- return NULL;
6721
- }
6722
- }
6723
-
6724
- for (uint64_t i = 0; i < n_kv; ++i) {
6725
- struct gguf_kv * kv = &ctx->kv[i];
6726
-
6727
- //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
6728
-
6729
- ok = ok && gguf_fread_str(file, &kv->key, &offset);
6730
- ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
6731
-
6732
- //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
6733
-
6734
- switch (kv->type) {
6735
- case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
6736
- case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
6737
- case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
6738
- case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
6739
- case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
6740
- case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
6741
- case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
6742
- case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
6743
- case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
6744
- case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
6745
- case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
6746
- case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
6747
- case GGUF_TYPE_ARRAY:
6748
- {
6749
- ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
6750
- ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
6751
-
6752
- switch (kv->value.arr.type) {
6753
- case GGUF_TYPE_UINT8:
6754
- case GGUF_TYPE_INT8:
6755
- case GGUF_TYPE_UINT16:
6756
- case GGUF_TYPE_INT16:
6757
- case GGUF_TYPE_UINT32:
6758
- case GGUF_TYPE_INT32:
6759
- case GGUF_TYPE_FLOAT32:
6760
- case GGUF_TYPE_UINT64:
6761
- case GGUF_TYPE_INT64:
6762
- case GGUF_TYPE_FLOAT64:
6763
- case GGUF_TYPE_BOOL:
6764
- {
6765
- // prevent from integer overflow in the malloc below
6766
- if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
6767
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
6768
- gguf_free(ctx);
6769
- return NULL;
6770
- }
6771
-
6772
- kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
6773
- if (!kv->value.arr.data) {
6774
- fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
6775
- gguf_free(ctx);
6776
- return NULL;
6777
- }
6778
-
6779
- ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
6780
- } break;
6781
- case GGUF_TYPE_STRING:
6782
- {
6783
- // prevent from integer overflow in the malloc below
6784
- if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
6785
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
6786
- gguf_free(ctx);
6787
- return NULL;
6788
- }
6789
-
6790
- kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str));
6791
- if (!kv->value.arr.data) {
6792
- fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
6793
- gguf_free(ctx);
6794
- return NULL;
6795
- }
6796
-
6797
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
6798
- ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
6799
- }
6800
- } break;
6801
- case GGUF_TYPE_ARRAY:
6802
- default:
6803
- {
6804
- fprintf(stderr, "%s: invalid array type %d\n", __func__, kv->value.arr.type);
6805
- ok = false;
6806
- } break;
6807
- }
6808
- } break;
6809
- default:
6810
- {
6811
- fprintf(stderr, "%s: invalid type %d\n", __func__, kv->type);
6812
- ok = false;
6813
- } break;
6814
- }
6815
-
6816
- if (!ok) {
6817
- break;
6818
- }
6819
- }
6820
-
6821
- if (!ok) {
6822
- fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
6823
- gguf_free(ctx);
6824
- return NULL;
6825
- }
6826
- }
6827
-
6828
- // read the tensor infos
6829
- if (ctx->header.n_tensors > 0) {
6830
- ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
6831
- if (!ctx->infos) {
6832
- fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__);
6833
- gguf_free(ctx);
6834
- return NULL;
6835
- }
6836
-
6837
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
6838
- struct gguf_tensor_info * info = &ctx->infos[i];
6839
-
6840
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
6841
- info->ne[j] = 1;
6842
- }
6843
-
6844
- ok = ok && gguf_fread_str(file, &info->name, &offset);
6845
- ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
6846
-
6847
- ok = ok && (info->n_dims <= GGML_MAX_DIMS);
6848
-
6849
- for (uint32_t j = 0; j < info->n_dims; ++j) {
6850
- ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
6851
- }
6852
-
6853
- ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
6854
- ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
6855
-
6856
- ok = ok && gguf_tensor_info_sanitize(info);
6857
-
6858
- // make sure there is no duplicated tensor names
6859
- for (uint64_t j = 0; j < i && ok; ++j) {
6860
- if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
6861
- fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
6862
- ok = false;
6863
- }
6864
- }
6865
-
6866
- if (!ok) {
6867
- fprintf(stderr, "%s: failed to read tensor info\n", __func__);
6868
- gguf_free(ctx);
6869
- return NULL;
6870
- }
6871
- }
6872
- }
6873
-
6874
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
6875
-
6876
- int alignment_idx = gguf_find_key(ctx, "general.alignment");
6877
- if (alignment_idx != -1) {
6878
- ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
6879
- }
6880
-
6881
- // we require the data section to be aligned, so take into account any padding
6882
- {
6883
- const size_t offset_pad = offset % ctx->alignment;
6884
-
6885
- if (offset_pad != 0) {
6886
- offset += ctx->alignment - offset_pad;
6887
- fseek(file, offset, SEEK_SET);
6888
- }
6889
- }
6890
-
6891
- // store the current file offset - this is where the data section starts
6892
- ctx->offset = offset;
6893
-
6894
- // compute the total size of the data section, taking into account the alignment
6895
- {
6896
- ctx->size = 0;
6897
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
6898
- struct gguf_tensor_info * info = &ctx->infos[i];
6899
-
6900
- const int64_t ne =
6901
- (int64_t) info->ne[0] *
6902
- (int64_t) info->ne[1] *
6903
- (int64_t) info->ne[2] *
6904
- (int64_t) info->ne[3];
6905
-
6906
- if (ggml_blck_size(info->type) == 0 ) {
6907
- // this tensor type support have been removed:
6908
- fprintf(stderr, "%s: tensor '%s' of type %d: %s\n",
6909
- __func__, info->name.data, (int) info->type, ggml_type_name(info->type));
6910
- gguf_free(ctx);
6911
- return NULL;
6912
- }
6913
-
6914
- if (ne % ggml_blck_size(info->type) != 0) {
6915
- fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
6916
- __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
6917
- gguf_free(ctx);
6918
- return NULL;
6919
- }
6920
-
6921
- const size_t size_cur = ggml_row_size(info->type, ne);
6922
-
6923
- ctx->size += GGML_PAD(size_cur, ctx->alignment);
6924
- }
6925
- }
6926
-
6927
- // load the tensor data only if requested
6928
- if (params.ctx != NULL) {
6929
- // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
6930
- // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
6931
- // the ggml_tensor structs to the appropriate locations in the binary blob
6932
-
6933
- // compute the exact size needed for the new ggml_context
6934
- const size_t mem_size =
6935
- params.no_alloc ?
6936
- (ctx->header.n_tensors )*ggml_tensor_overhead() :
6937
- (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
6938
-
6939
- struct ggml_init_params pdata = {
6940
- .mem_size = mem_size,
6941
- .mem_buffer = NULL,
6942
- .no_alloc = params.no_alloc,
6943
- };
6944
-
6945
- *params.ctx = ggml_init(pdata);
6946
- if (*params.ctx == NULL) {
6947
- fprintf(stderr, "%s: failed to initialize context\n", __func__);
6948
- gguf_free(ctx);
6949
- return NULL;
6950
- }
6951
-
6952
- struct ggml_context * ctx_data = *params.ctx;
6953
-
6954
- struct ggml_tensor * data = NULL;
6955
-
6956
- if (!params.no_alloc) {
6957
- data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
6958
-
6959
- ok = ok && data != NULL;
6960
-
6961
- // read the binary blob with the tensor data
6962
- ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
6963
-
6964
- if (!ok) {
6965
- fprintf(stderr, "%s: failed to read tensor data\n", __func__);
6966
- ggml_free(ctx_data);
6967
- gguf_free(ctx);
6968
- return NULL;
6969
- }
6970
-
6971
- ctx->data = data->data;
6972
- }
6973
-
6974
- ggml_set_no_alloc(ctx_data, true);
6975
-
6976
- // create the tensors
6977
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
6978
- const int64_t ne[GGML_MAX_DIMS] = {
6979
- ctx->infos[i].ne[0],
6980
- ctx->infos[i].ne[1],
6981
- ctx->infos[i].ne[2],
6982
- ctx->infos[i].ne[3],
6983
- };
6984
-
6985
- struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
6986
-
6987
- ok = ok && cur != NULL;
6988
-
6989
- if (!ok) {
6990
- break;
6991
- }
6992
-
6993
- ggml_set_name(cur, ctx->infos[i].name.data);
6994
-
6995
- // point the data member to the appropriate location in the binary blob using the tensor infos
6996
- if (!params.no_alloc) {
6997
- //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
6998
- cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
6999
- }
7000
- }
7001
-
7002
- if (!ok) {
7003
- fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
7004
- ggml_free(ctx_data);
7005
- gguf_free(ctx);
7006
- return NULL;
7007
- }
7008
-
7009
- ggml_set_no_alloc(ctx_data, params.no_alloc);
7010
- }
7011
-
7012
- return ctx;
7013
- }
7014
-
7015
- struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
7016
- FILE * file = ggml_fopen(fname, "rb");
7017
- if (!file) {
7018
- fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
7019
- return NULL;
7020
- }
7021
-
7022
- struct gguf_context * result = gguf_init_from_file_impl(file, params);
7023
- fclose(file);
7024
- return result;
7025
- }
7026
-
7027
- void gguf_free(struct gguf_context * ctx) {
7028
- if (ctx == NULL) {
7029
- return;
7030
- }
7031
-
7032
- if (ctx->kv) {
7033
- // free string memory - not great..
7034
- for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
7035
- gguf_free_kv(&ctx->kv[i]);
7036
- }
7037
-
7038
- GGML_FREE(ctx->kv);
7039
- }
7040
-
7041
- if (ctx->infos) {
7042
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
7043
- struct gguf_tensor_info * info = &ctx->infos[i];
7044
-
7045
- if (info->name.data) {
7046
- GGML_FREE(info->name.data);
7047
- }
7048
- }
7049
-
7050
- GGML_FREE(ctx->infos);
7051
- }
7052
-
7053
- GGML_FREE(ctx);
7054
- }
7055
-
7056
- const char * gguf_type_name(enum gguf_type type) {
7057
- return GGUF_TYPE_NAME[type];
7058
- }
7059
-
7060
- int gguf_get_version(const struct gguf_context * ctx) {
7061
- return ctx->header.version;
7062
- }
7063
-
7064
- size_t gguf_get_alignment(const struct gguf_context * ctx) {
7065
- return ctx->alignment;
7066
- }
7067
-
7068
- size_t gguf_get_data_offset(const struct gguf_context * ctx) {
7069
- return ctx->offset;
7070
- }
7071
-
7072
- void * gguf_get_data(const struct gguf_context * ctx) {
7073
- return ctx->data;
7074
- }
7075
-
7076
- int gguf_get_n_kv(const struct gguf_context * ctx) {
7077
- return ctx->header.n_kv;
7078
- }
7079
-
7080
- int gguf_find_key(const struct gguf_context * ctx, const char * key) {
7081
- // return -1 if key not found
7082
- int keyfound = -1;
7083
-
7084
- const int n_kv = gguf_get_n_kv(ctx);
7085
-
7086
- for (int i = 0; i < n_kv; ++i) {
7087
- if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
7088
- keyfound = i;
7089
- break;
7090
- }
7091
- }
7092
-
7093
- return keyfound;
7094
- }
7095
-
7096
- const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
7097
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7098
- return ctx->kv[key_id].key.data;
7099
- }
7100
-
7101
- enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
7102
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7103
- return ctx->kv[key_id].type;
7104
- }
7105
-
7106
- enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
7107
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7108
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
7109
- return ctx->kv[key_id].value.arr.type;
7110
- }
7111
-
7112
- const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
7113
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7114
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
7115
- return ctx->kv[key_id].value.arr.data;
7116
- }
7117
-
7118
- const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
7119
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7120
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
7121
- struct gguf_kv * kv = &ctx->kv[key_id];
7122
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
7123
- return str->data;
7124
- }
7125
-
7126
- int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
7127
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7128
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
7129
- return ctx->kv[key_id].value.arr.n;
7130
- }
7131
-
7132
- uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
7133
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7134
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
7135
- return ctx->kv[key_id].value.uint8;
7136
- }
7137
-
7138
- int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
7139
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7140
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
7141
- return ctx->kv[key_id].value.int8;
7142
- }
7143
-
7144
- uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
7145
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7146
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
7147
- return ctx->kv[key_id].value.uint16;
7148
- }
7149
-
7150
- int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
7151
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7152
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
7153
- return ctx->kv[key_id].value.int16;
7154
- }
7155
-
7156
- uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
7157
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7158
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
7159
- return ctx->kv[key_id].value.uint32;
7160
- }
7161
-
7162
- int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
7163
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7164
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
7165
- return ctx->kv[key_id].value.int32;
7166
- }
7167
-
7168
- float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
7169
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7170
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
7171
- return ctx->kv[key_id].value.float32;
7172
- }
7173
-
7174
- uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
7175
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7176
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
7177
- return ctx->kv[key_id].value.uint64;
7178
- }
7179
-
7180
- int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
7181
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7182
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
7183
- return ctx->kv[key_id].value.int64;
7184
- }
7185
-
7186
- double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
7187
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7188
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
7189
- return ctx->kv[key_id].value.float64;
7190
- }
7191
-
7192
- bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
7193
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7194
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
7195
- return ctx->kv[key_id].value.bool_;
7196
- }
7197
-
7198
- const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
7199
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7200
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
7201
- return ctx->kv[key_id].value.str.data;
7202
- }
7203
-
7204
- const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
7205
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
7206
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
7207
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
7208
- return &ctx->kv[key_id].value;
7209
- }
7210
-
7211
- int gguf_get_n_tensors(const struct gguf_context * ctx) {
7212
- return ctx->header.n_tensors;
7213
- }
7214
-
7215
- int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
7216
- // return -1 if tensor not found
7217
- int tensorfound = -1;
7218
-
7219
- const int n_tensors = gguf_get_n_tensors(ctx);
7220
-
7221
- for (int i = 0; i < n_tensors; ++i) {
7222
- if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
7223
- tensorfound = i;
7224
- break;
7225
- }
7226
- }
7227
-
7228
- return tensorfound;
7229
- }
7230
-
7231
- size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
7232
- return ctx->infos[i].offset;
7233
- }
7234
-
7235
- char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
7236
- return ctx->infos[i].name.data;
7237
- }
7238
-
7239
- enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
7240
- return ctx->infos[i].type;
7241
- }
7242
-
7243
- // returns the index
7244
- static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
7245
- const int idx = gguf_find_key(ctx, key);
7246
- if (idx >= 0) {
7247
- return idx;
7248
- }
7249
-
7250
- const int n_kv = gguf_get_n_kv(ctx);
7251
-
7252
- ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
7253
- ctx->kv[n_kv].key.n = strlen(key);
7254
- ctx->kv[n_kv].key.data = strdup(key);
7255
- ctx->header.n_kv++;
7256
-
7257
- return n_kv;
7258
- }
7259
-
7260
- void gguf_remove_key(struct gguf_context * ctx, const char * key) {
7261
- const int idx = gguf_find_key(ctx, key);
7262
- if (idx >= 0) {
7263
- const int n_kv = gguf_get_n_kv(ctx);
7264
- gguf_free_kv(&ctx->kv[idx]);
7265
- for (int i = idx; i < n_kv-1; ++i) {
7266
- ctx->kv[i] = ctx->kv[i+1];
7267
- }
7268
- ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
7269
- ctx->header.n_kv--;
7270
- }
7271
- }
7272
-
7273
- void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
7274
- const int idx = gguf_get_or_add_key(ctx, key);
7275
-
7276
- ctx->kv[idx].type = GGUF_TYPE_UINT8;
7277
- ctx->kv[idx].value.uint8 = val;
7278
- }
7279
-
7280
- void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
7281
- const int idx = gguf_get_or_add_key(ctx, key);
7282
-
7283
- ctx->kv[idx].type = GGUF_TYPE_INT8;
7284
- ctx->kv[idx].value.int8 = val;
7285
- }
7286
-
7287
- void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
7288
- const int idx = gguf_get_or_add_key(ctx, key);
7289
-
7290
- ctx->kv[idx].type = GGUF_TYPE_UINT16;
7291
- ctx->kv[idx].value.uint16 = val;
7292
- }
7293
-
7294
- void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
7295
- const int idx = gguf_get_or_add_key(ctx, key);
7296
-
7297
- ctx->kv[idx].type = GGUF_TYPE_INT16;
7298
- ctx->kv[idx].value.int16 = val;
7299
- }
7300
-
7301
- void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
7302
- const int idx = gguf_get_or_add_key(ctx, key);
7303
-
7304
- ctx->kv[idx].type = GGUF_TYPE_UINT32;
7305
- ctx->kv[idx].value.uint32 = val;
7306
- }
7307
-
7308
- void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
7309
- const int idx = gguf_get_or_add_key(ctx, key);
7310
-
7311
- ctx->kv[idx].type = GGUF_TYPE_INT32;
7312
- ctx->kv[idx].value.int32 = val;
7313
- }
7314
-
7315
- void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
7316
- const int idx = gguf_get_or_add_key(ctx, key);
7317
-
7318
- ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
7319
- ctx->kv[idx].value.float32 = val;
7320
- }
7321
-
7322
- void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
7323
- const int idx = gguf_get_or_add_key(ctx, key);
7324
-
7325
- ctx->kv[idx].type = GGUF_TYPE_UINT64;
7326
- ctx->kv[idx].value.uint64 = val;
7327
- }
7328
-
7329
- void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
7330
- const int idx = gguf_get_or_add_key(ctx, key);
7331
-
7332
- ctx->kv[idx].type = GGUF_TYPE_INT64;
7333
- ctx->kv[idx].value.int64 = val;
7334
- }
7335
-
7336
- void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
7337
- const int idx = gguf_get_or_add_key(ctx, key);
7338
-
7339
- ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
7340
- ctx->kv[idx].value.float64 = val;
7341
- }
7342
-
7343
- void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
7344
- const int idx = gguf_get_or_add_key(ctx, key);
7345
-
7346
- ctx->kv[idx].type = GGUF_TYPE_BOOL;
7347
- ctx->kv[idx].value.bool_ = val;
7348
- }
7349
-
7350
- void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
7351
- const int idx = gguf_get_or_add_key(ctx, key);
7352
-
7353
- ctx->kv[idx].type = GGUF_TYPE_STRING;
7354
- ctx->kv[idx].value.str.n = strlen(val);
7355
- ctx->kv[idx].value.str.data = strdup(val);
7356
- }
7357
-
7358
- void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
7359
- const int idx = gguf_get_or_add_key(ctx, key);
7360
-
7361
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
7362
- ctx->kv[idx].value.arr.type = type;
7363
- ctx->kv[idx].value.arr.n = n;
7364
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
7365
- memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
7366
- }
7367
-
7368
- void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
7369
- const int idx = gguf_get_or_add_key(ctx, key);
7370
-
7371
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
7372
- ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
7373
- ctx->kv[idx].value.arr.n = n;
7374
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
7375
- for (int i = 0; i < n; i++) {
7376
- struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
7377
- str->n = strlen(data[i]);
7378
- str->data = strdup(data[i]);
7379
- }
7380
- }
7381
-
7382
- // set or add KV pairs from another context
7383
- void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
7384
- for (uint32_t i = 0; i < src->header.n_kv; i++) {
7385
- switch (src->kv[i].type) {
7386
- case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
7387
- case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
7388
- case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
7389
- case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
7390
- case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
7391
- case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
7392
- case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
7393
- case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
7394
- case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
7395
- case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
7396
- case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
7397
- case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
7398
- case GGUF_TYPE_ARRAY:
7399
- {
7400
- if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
7401
- const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
7402
- for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
7403
- data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
7404
- }
7405
- gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
7406
- GGML_FREE((void *)data);
7407
- } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
7408
- GGML_ABORT("nested arrays not supported");
7409
- } else {
7410
- gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
7411
- }
7412
- } break;
7413
- default: GGML_ABORT("invalid type");
7414
- }
7415
- }
7416
- }
7417
-
7418
- void gguf_add_tensor(
7419
- struct gguf_context * ctx,
7420
- const struct ggml_tensor * tensor) {
7421
- GGML_ASSERT(tensor);
7422
- if (gguf_find_tensor(ctx, tensor->name) != -1) {
7423
- GGML_ABORT("duplicated tensor name");
7424
- }
7425
-
7426
- const int idx = ctx->header.n_tensors;
7427
- ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
7428
-
7429
- ctx->infos[idx].name.n = strlen(tensor->name);
7430
- ctx->infos[idx].name.data = strdup(tensor->name);
7431
-
7432
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
7433
- ctx->infos[idx].ne[i] = 1;
7434
- }
7435
-
7436
- ctx->infos[idx].n_dims = ggml_n_dims(tensor);
7437
- for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
7438
- ctx->infos[idx].ne[i] = tensor->ne[i];
7439
- }
7440
-
7441
- ctx->infos[idx].type = tensor->type;
7442
- ctx->infos[idx].offset = 0;
7443
- ctx->infos[idx].data = tensor->data;
7444
- ctx->infos[idx].size = ggml_nbytes(tensor);
7445
-
7446
- if (ctx->header.n_tensors > 0) {
7447
- ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
7448
- }
7449
-
7450
- ctx->header.n_tensors++;
7451
- }
7452
-
7453
- void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
7454
- const int idx = gguf_find_tensor(ctx, name);
7455
- if (idx < 0) {
7456
- GGML_ABORT("tensor not found");
7457
- }
7458
-
7459
- ctx->infos[idx].type = type;
7460
- }
7461
-
7462
- void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
7463
- const int idx = gguf_find_tensor(ctx, name);
7464
- if (idx < 0) {
7465
- GGML_ABORT("tensor not found");
7466
- }
7467
-
7468
- ctx->infos[idx].data = data;
7469
- ctx->infos[idx].size = size;
7470
-
7471
- // update offsets
7472
- for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
7473
- ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
7474
- }
7475
- }
7476
-
7477
- //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
7478
- // fwrite(&val->n, sizeof(val->n), 1, file);
7479
- // fwrite(val->data, sizeof(char), val->n, file);
7480
- //}
7481
- //
7482
- //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
7483
- // fwrite(val, sizeof(char), size, file);
7484
- //}
7485
-
7486
- struct gguf_buf gguf_buf_init(size_t size) {
7487
- struct gguf_buf buf = {
7488
- /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
7489
- /*buf.size =*/ size,
7490
- /*buf.offset =*/ 0,
7491
- };
7492
-
7493
- return buf;
7494
- }
7495
-
7496
- void gguf_buf_free(struct gguf_buf buf) {
7497
- if (buf.data) {
7498
- GGML_FREE(buf.data);
7499
- }
7500
- }
7501
-
7502
- static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
7503
- if (buf->offset + size > buf->size) {
7504
- buf->size = 1.5*(buf->offset + size);
7505
- if (buf->data) {
7506
- buf->data = realloc(buf->data, buf->size);
7507
- }
7508
- }
7509
- }
7510
-
7511
- static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
7512
- gguf_buf_grow(buf, sizeof(val->n) + val->n);
7513
-
7514
- if (buf->data) {
7515
- memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
7516
- }
7517
- buf->offset += sizeof(val->n);
7518
-
7519
- if (buf->data) {
7520
- memcpy((char *) buf->data + buf->offset, val->data, val->n);
7521
- }
7522
- buf->offset += val->n;
7523
- }
7524
-
7525
- static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
7526
- gguf_buf_grow(buf, el_size);
7527
-
7528
- if (buf->data) {
7529
- memcpy((char *) buf->data + buf->offset, val, el_size);
7530
- }
7531
- buf->offset += el_size;
7532
- }
7533
-
7534
- void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
7535
- // write header
7536
- gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
7537
- gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
7538
- gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
7539
- gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
7540
-
7541
- // write key-value pairs
7542
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
7543
- struct gguf_kv * kv = &ctx->kv[i];
7544
-
7545
- gguf_bwrite_str(buf, &kv->key);
7546
- gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
7547
-
7548
- switch (kv->type) {
7549
- case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
7550
- case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
7551
- case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
7552
- case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
7553
- case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
7554
- case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
7555
- case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
7556
- case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
7557
- case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
7558
- case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
7559
- case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
7560
- case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
7561
- case GGUF_TYPE_ARRAY:
7562
- {
7563
- gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
7564
- gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
7565
-
7566
- switch (kv->value.arr.type) {
7567
- case GGUF_TYPE_UINT8:
7568
- case GGUF_TYPE_INT8:
7569
- case GGUF_TYPE_UINT16:
7570
- case GGUF_TYPE_INT16:
7571
- case GGUF_TYPE_UINT32:
7572
- case GGUF_TYPE_INT32:
7573
- case GGUF_TYPE_FLOAT32:
7574
- case GGUF_TYPE_UINT64:
7575
- case GGUF_TYPE_INT64:
7576
- case GGUF_TYPE_FLOAT64:
7577
- case GGUF_TYPE_BOOL:
7578
- {
7579
- gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
7580
- } break;
7581
- case GGUF_TYPE_STRING:
7582
- {
7583
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
7584
- gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
7585
- }
7586
- } break;
7587
- case GGUF_TYPE_ARRAY:
7588
- default: GGML_ABORT("invalid type");
7589
- }
7590
- } break;
7591
- default: GGML_ABORT("invalid type");
7592
- }
7593
- }
7594
-
7595
- // write tensor infos
7596
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
7597
- struct gguf_tensor_info * info = &ctx->infos[i];
7598
-
7599
- gguf_bwrite_str(buf, &info->name);
7600
- gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
7601
- for (uint32_t j = 0; j < info->n_dims; ++j) {
7602
- gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
7603
- }
7604
- gguf_bwrite_el(buf, &info->type, sizeof(info->type));
7605
- gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
7606
- }
7607
-
7608
- // we require the data section to be aligned, so take into account any padding
7609
- {
7610
- const size_t offset = buf->offset;
7611
- const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
7612
-
7613
- if (offset_pad != offset) {
7614
- uint8_t pad = 0;
7615
- for (size_t i = 0; i < offset_pad - offset; ++i) {
7616
- gguf_bwrite_el(buf, &pad, sizeof(pad));
7617
- }
7618
- }
7619
- }
7620
-
7621
- if (only_meta) {
7622
- return;
7623
- }
7624
-
7625
- size_t offset = 0;
7626
-
7627
- // write tensor data
7628
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
7629
- struct gguf_tensor_info * info = &ctx->infos[i];
7630
-
7631
- const size_t size = info->size;
7632
- const size_t size_pad = GGML_PAD(size, ctx->alignment);
7633
-
7634
- gguf_bwrite_el(buf, info->data, size);
7635
-
7636
- if (size_pad != size) {
7637
- uint8_t pad = 0;
7638
- for (size_t j = 0; j < size_pad - size; ++j) {
7639
- gguf_bwrite_el(buf, &pad, sizeof(pad));
7640
- }
7641
- }
7642
-
7643
- GGML_ASSERT(offset == info->offset);
7644
-
7645
- offset += size_pad;
7646
- }
7647
- }
7648
-
7649
- void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
7650
- FILE * file = ggml_fopen(fname, "wb");
7651
- if (!file) {
7652
- GGML_ABORT("failed to open file for writing");
7653
- }
7654
-
7655
- struct gguf_buf buf = gguf_buf_init(16*1024);
7656
-
7657
- gguf_write_to_buf(ctx, &buf, only_meta);
7658
-
7659
- fwrite(buf.data, 1, buf.offset, file);
7660
-
7661
- gguf_buf_free(buf);
7662
-
7663
- fclose(file);
7664
- }
7665
-
7666
- size_t gguf_get_meta_size(const struct gguf_context * ctx) {
7667
- // no allocs - only compute size
7668
- struct gguf_buf buf = gguf_buf_init(0);
7669
-
7670
- gguf_write_to_buf(ctx, &buf, true);
7671
-
7672
- return buf.offset;
7673
- }
7674
-
7675
- void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
7676
- struct gguf_buf buf = gguf_buf_init(16*1024);
7677
-
7678
- gguf_write_to_buf(ctx, &buf, true);
7679
-
7680
- memcpy(data, buf.data, buf.offset);
7681
-
7682
- gguf_buf_free(buf);
7683
- }
7684
-
7685
  void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
7686
  g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
7687
  g_logger_state.log_callback_user_data = user_data;
 
1588
 
1589
  struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
1590
 
 
 
 
 
 
 
1591
  *result = (struct ggml_tensor) {
1592
  /*.type =*/ type,
 
1593
  /*.buffer =*/ NULL,
1594
  /*.ne =*/ { 1, 1, 1, 1 },
1595
  /*.nb =*/ { 0, 0, 0, 0 },
 
1605
  /*.padding =*/ { 0 },
1606
  };
1607
 
 
 
 
 
1608
  // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
1609
  //GGML_ASSERT_ALIGNED(result->data);
1610
 
 
6406
 
6407
  ////////////////////////////////////////////////////////////////////////////////
6408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6409
  void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
6410
  g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
6411
  g_logger_state.log_callback_user_data = user_data;