Spaces:
Running
Running
| // GGML internal header | |
| // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example: | |
| // | |
| // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ | |
| // | |
| extern "C" { | |
| void ggml_print_backtrace(void); | |
| // required for mmap as gguf only guarantees 32-byte alignment | |
| // static_assert should be a #define, but if it's not, | |
| // fall back to the _Static_assert C11 keyword. | |
| // if C99 - static_assert is noop | |
| // ref: https://stackoverflow.com/a/53923785/4039976 | |
| static inline int ggml_up32(int n) { | |
| return (n + 31) & ~31; | |
| } | |
| //static inline int ggml_up64(int n) { | |
| // return (n + 63) & ~63; | |
| //} | |
| static inline int ggml_up(int n, int m) { | |
| // assert m is a power of 2 | |
| GGML_ASSERT((m & (m - 1)) == 0); | |
| return (n + m - 1) & ~(m - 1); | |
| } | |
| // TODO: move to ggml.h? | |
| static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { | |
| if (a->type != b->type) { | |
| return false; | |
| } | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| if (a->ne[i] != b->ne[i]) { | |
| return false; | |
| } | |
| if (a->nb[i] != b->nb[i]) { | |
| return false; | |
| } | |
| } | |
| return true; | |
| } | |
| // | |
| // logging | |
| // | |
| GGML_ATTRIBUTE_FORMAT(2, 3) | |
| GGML_API void ggml_log_internal (enum ggml_log_level level, const char * format, ...); | |
| GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data); | |
| // tensor params | |
| static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { | |
| GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings | |
| assert(params_size <= GGML_MAX_OP_PARAMS); | |
| memcpy(tensor->op_params, params, params_size); | |
| } | |
| static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); | |
| return ((const int32_t *)(tensor->op_params))[i]; | |
| } | |
| static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); | |
| return ((const float *)(tensor->op_params))[i]; | |
| } | |
| static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); | |
| ((int32_t *)(tensor->op_params))[i] = value; | |
| } | |
| static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) { | |
| assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); | |
| ((float *)(tensor->op_params))[i] = value; | |
| } | |
| struct ggml_map_custom1_op_params { | |
| ggml_custom1_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| struct ggml_map_custom2_op_params { | |
| ggml_custom2_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| struct ggml_map_custom3_op_params { | |
| ggml_custom3_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| struct ggml_custom_op_params { | |
| ggml_custom_op_t fun; | |
| int n_tasks; | |
| void * userdata; | |
| }; | |
| // bitset | |
| typedef uint32_t ggml_bitset_t; | |
| static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated"); | |
| static size_t ggml_bitset_size(size_t n) { | |
| return (n + BITSET_MASK) >> BITSET_SHR; | |
| } | |
| static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) { | |
| return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK))); | |
| } | |
| static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) { | |
| bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK)); | |
| } | |
| static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) { | |
| bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK)); | |
| } | |
| // hash set | |
| struct ggml_hash_set { | |
| size_t size; | |
| ggml_bitset_t * used; // whether or not the keys are in use i.e. set | |
| struct ggml_tensor ** keys; // actual tensors in the set, keys[i] is only defined if ggml_bitset_get(used, i) | |
| }; | |
| struct ggml_hash_set ggml_hash_set_new(size_t size); | |
| void ggml_hash_set_free(struct ggml_hash_set * hash_set); | |
| // returns the minimum size for a hash set that can hold min_sz elements | |
| size_t ggml_hash_size(size_t min_sz); | |
| // remove all elements from the hash set | |
| void ggml_hash_set_reset(struct ggml_hash_set * hash_set); | |
| // returns true if key is in the hash set | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key); | |
| // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // return index, asserts if table is full | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key); | |
| // hash function for ggml_tensor | |
| static inline size_t ggml_hash(const struct ggml_tensor * p) { | |
| // the last 4 bits are always zero due to alignment | |
| return (size_t)(uintptr_t)p >> 4; | |
| } | |
| static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, const struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) { | |
| i = (i + 1) % hash_set->size; | |
| if (i == h) { | |
| // visited all hash table entries -> not found | |
| return GGML_HASHSET_FULL; | |
| } | |
| } | |
| return i; | |
| } | |
| static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t i = ggml_hash_find(hash_set, key); | |
| return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i); | |
| } | |
| static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| do { | |
| if (!ggml_bitset_get(hash_set->used, i)) { | |
| ggml_bitset_set(hash_set->used, i); | |
| hash_set->keys[i] = key; | |
| return i; | |
| } | |
| if (hash_set->keys[i] == key) { | |
| return GGML_HASHSET_ALREADY_EXISTS; | |
| } | |
| i = (i + 1) % hash_set->size; | |
| } while (i != h); | |
| // visited all hash table entries -> not found | |
| GGML_ABORT("fatal error"); | |
| } | |
| static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) { | |
| size_t h = ggml_hash(key) % hash_set->size; | |
| // linear probing | |
| size_t i = h; | |
| do { | |
| if (!ggml_bitset_get(hash_set->used, i)) { | |
| ggml_bitset_set(hash_set->used, i); | |
| hash_set->keys[i] = key; | |
| return i; | |
| } | |
| if (hash_set->keys[i] == key) { | |
| return i; | |
| } | |
| i = (i + 1) % hash_set->size; | |
| } while (i != h); | |
| // visited all hash table entries -> not found | |
| GGML_ABORT("fatal error"); | |
| } | |
| // computation graph | |
| enum ggml_cgraph_eval_order { | |
| GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, | |
| GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, | |
| GGML_CGRAPH_EVAL_ORDER_COUNT | |
| }; | |
| struct ggml_cgraph { | |
| int size; // maximum number of nodes/leafs/grads/grad_accs | |
| int n_nodes; // number of nodes currently in use | |
| int n_leafs; // number of leafs currently in use | |
| struct ggml_tensor ** nodes; // tensors with data that can change if the graph is evaluated | |
| struct ggml_tensor ** grads; // the outputs of these tensors are the gradients of the nodes | |
| struct ggml_tensor ** grad_accs; // accumulators for node gradients | |
| struct ggml_tensor ** leafs; // tensors with constant data | |
| int32_t * use_counts;// number of uses of each tensor, indexed by hash table slot | |
| struct ggml_hash_set visited_hash_set; | |
| enum ggml_cgraph_eval_order order; | |
| }; | |
| // returns a slice of cgraph with nodes [i0, i1) | |
| // the slice does not have leafs or gradients | |
| // if you need the gradients, get them from the original graph | |
| struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1); | |
| // Memory allocation | |
| GGML_API void * ggml_aligned_malloc(size_t size); | |
| GGML_API void ggml_aligned_free(void * ptr, size_t size); | |
| // FP16 <-> FP32 | |
| // ref: https://github.com/Maratyszcza/FP16 | |
| static inline float fp32_from_bits(uint32_t w) { | |
| union { | |
| uint32_t as_bits; | |
| float as_value; | |
| } fp32; | |
| fp32.as_bits = w; | |
| return fp32.as_value; | |
| } | |
| static inline uint32_t fp32_to_bits(float f) { | |
| union { | |
| float as_value; | |
| uint32_t as_bits; | |
| } fp32; | |
| fp32.as_value = f; | |
| return fp32.as_bits; | |
| } | |
| static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { | |
| const uint32_t w = (uint32_t) h << 16; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| const uint32_t two_w = w + w; | |
| const uint32_t exp_offset = UINT32_C(0xE0) << 23; | |
| const float exp_scale = 0x1.0p-112f; | |
| const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); | |
| const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; | |
| const uint32_t magic_mask = UINT32_C(126) << 23; | |
| const float magic_bias = 0.5f; | |
| const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; | |
| const uint32_t denormalized_cutoff = UINT32_C(1) << 27; | |
| const uint32_t result = sign | | |
| (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); | |
| return fp32_from_bits(result); | |
| } | |
| static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { | |
| const float scale_to_inf = 0x1.0p+112f; | |
| const float scale_to_zero = 0x1.0p-110f; | |
| const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); | |
| const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); | |
| float base = (fabsf(f) * scale_to_inf) * scale_to_zero; | |
| const uint32_t w = fp32_to_bits(f); | |
| const uint32_t shl1_w = w + w; | |
| const uint32_t sign = w & UINT32_C(0x80000000); | |
| uint32_t bias = shl1_w & UINT32_C(0xFF000000); | |
| if (bias < UINT32_C(0x71000000)) { | |
| bias = UINT32_C(0x71000000); | |
| } | |
| base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; | |
| const uint32_t bits = fp32_to_bits(base); | |
| const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); | |
| const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); | |
| const uint32_t nonsign = exp_bits + mantissa_bits; | |
| return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); | |
| } | |
| static inline float ggml_e8m0_to_fp32(uint8_t x) { | |
| uint32_t bits; // Stores the raw bit representation of the float | |
| // Handle special case for minimum exponent (denormalized float) | |
| if (x == 0) { | |
| // Bit pattern for 2^(-127): | |
| // - Sign bit: 0 (positive) | |
| // - Exponent: 0 (denormalized number) | |
| // - Mantissa: 0x400000 (0.5 in fractional form) | |
| // Value = 0.5 * 2^(-126) = 2^(-127) | |
| bits = 0x00400000; | |
| } | |
| // note: disabled as we don't need to handle NaNs | |
| //// Handle special case for NaN (all bits set) | |
| //else if (x == 0xFF) { | |
| // // Standard quiet NaN pattern: | |
| // // - Sign bit: 0 | |
| // // - Exponent: all 1s (0xFF) | |
| // // - Mantissa: 0x400000 (quiet NaN flag) | |
| // bits = 0x7FC00000; | |
| //} | |
| // Normalized values (most common case) | |
| else { | |
| // Construct normalized float by shifting exponent into position: | |
| // - Exponent field: 8 bits (positions 30-23) | |
| // - Mantissa: 0 (implicit leading 1) | |
| // Value = 2^(x - 127) | |
| bits = (uint32_t) x << 23; | |
| } | |
| float result; // Final float value | |
| // Safely reinterpret bit pattern as float without type-punning issues | |
| memcpy(&result, &bits, sizeof(float)); | |
| return result; | |
| } | |
| // Equal to ggml_e8m0_to_fp32/2 | |
| // Useful with MXFP4 quantization since the E0M2 values are doubled | |
| static inline float ggml_e8m0_to_fp32_half(uint8_t x) { | |
| uint32_t bits; | |
| // For x < 2: use precomputed denormal patterns | |
| if (x < 2) { | |
| // 0x00200000 = 2^(-128), 0x00400000 = 2^(-127) | |
| bits = 0x00200000 << x; | |
| } | |
| // For x >= 2: normalized exponent adjustment | |
| else { | |
| // 0.5 * 2^(x-127) = 2^(x-128) = normalized with exponent (x-1) | |
| bits = (uint32_t)(x - 1) << 23; | |
| } | |
| // Note: NaNs are not handled here | |
| float result; | |
| memcpy(&result, &bits, sizeof(float)); | |
| return result; | |
| } | |
| /** | |
| * Converts brain16 to float32. | |
| * | |
| * The bfloat16 floating point format has the following structure: | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * βββββ΄βββββββ΄ββββ | |
| * 0b0000000000000000 brain16 | |
| * | |
| * Since bf16 has the same number of exponent bits as a 32bit float, | |
| * encoding and decoding numbers becomes relatively straightforward. | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * βββββ΄βββββββ΄ββββββββββββββββββββ | |
| * 0b00000000000000000000000000000000 IEEE binary32 | |
| * | |
| * For comparison, the standard fp16 format has fewer exponent bits. | |
| * | |
| * βsign | |
| * β | |
| * β βexponent | |
| * β β | |
| * β β βmantissa | |
| * β β β | |
| * ββββ΄βββββ΄βββββββ | |
| * 0b0000000000000000 IEEE binary16 | |
| * | |
| * @see IEEE 754-2008 | |
| */ | |
| static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) { | |
| union { | |
| float f; | |
| uint32_t i; | |
| } u; | |
| u.i = (uint32_t)h.bits << 16; | |
| return u.f; | |
| } | |
| /** | |
| * Converts float32 to brain16. | |
| * | |
| * This is binary identical with Google Brain float conversion. | |
| * Floats shall round to nearest even, and NANs shall be quiet. | |
| * Subnormals aren't flushed to zero, except perhaps when used. | |
| * This code should vectorize nicely if using modern compilers. | |
| */ | |
| static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) { | |
| ggml_bf16_t h; | |
| union { | |
| float f; | |
| uint32_t i; | |
| } u; | |
| u.f = s; | |
| if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */ | |
| h.bits = (u.i >> 16) | 64; /* force to quiet */ | |
| return h; | |
| } | |
| h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16; | |
| return h; | |
| } | |
| // return true if the node's results are only used by N other nodes | |
| // and can be fused into their calculations. | |
| static inline bool ggml_node_has_n_uses(const struct ggml_cgraph * cgraph, int node_idx, int32_t n_uses) { | |
| const struct ggml_tensor * node = cgraph->nodes[node_idx]; | |
| // check the use count against how many we're replacing | |
| size_t hash_pos = ggml_hash_find(&cgraph->visited_hash_set, node); | |
| if (!ggml_bitset_get(cgraph->visited_hash_set.used, hash_pos) || cgraph->use_counts[hash_pos] != n_uses) { | |
| return false; | |
| } | |
| // if node is a view, some other node might be using the intermediate result | |
| // via the view source. | |
| if (node->view_src) { | |
| return false; | |
| } | |
| // If the user requested output for the node, can't fuse | |
| if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { | |
| return false; | |
| } | |
| return true; | |
| } | |
| // Returns true if nodes [i, i+ops.size()) are the sequence of ggml_ops in ops[] | |
| // and are fusable. Nodes are considered fusable according to this function if: | |
| // - all nodes except the last have only one use and are not views/outputs (see ggml_node_has_N_uses). | |
| // - all nodes except the last are a src of the following node. | |
| // - all nodes are the same shape. | |
| // TODO: Consider allowing GGML_OP_NONE nodes in between | |
| static inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, const enum ggml_op * ops, int num_ops) { | |
| if (node_idx + num_ops > cgraph->n_nodes) { | |
| return false; | |
| } | |
| for (int i = 0; i < num_ops; ++i) { | |
| struct ggml_tensor * node = cgraph->nodes[node_idx + i]; | |
| if (node->op != ops[i]) { | |
| return false; | |
| } | |
| if (i < num_ops - 1 && !ggml_node_has_n_uses(cgraph, node_idx + i, 1)) { | |
| return false; | |
| } | |
| if (i > 0) { | |
| struct ggml_tensor * prev = cgraph->nodes[node_idx + i - 1]; | |
| if (node->src[0] != prev && node->src[1] != prev) { | |
| return false; | |
| } | |
| if (!ggml_are_same_shape(node, prev)) { | |
| return false; | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| } | |
| // nicer C++ syntax for ggml_can_fuse | |
| inline bool ggml_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) { | |
| return ggml_can_fuse(cgraph, node_idx, ops.begin(), (int)ops.size()); | |
| } | |
| // expose GGUF internals for test code | |
| GGML_API size_t gguf_type_size(enum gguf_type type); | |
| GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params); | |
| GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta); | |